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Abstract

In this report, we study Private Set Intersection (PSI), a specific scenario in secure multi-party
computation, allowing parties to jointly compute the intersection of their inputs without revealing
anything more. Private set intersection is not only significant theoretically, but it is also widely
used in practice. It has been motivated for many real-life applications. We first revisit the state of
the art of PSI, go through all types of PSI protocols while we deeply analyze some breakthrough
PSI protocols. Second, we introduce our new PSI protocol, which is very efficient and can be
competitive with other current fastest protocols. The idea behind our PSI is constructing a batch
obvious pseudorandom function (OPRF) based on subfield oblivious linear-function evaluation
(subVOLE) and hashing techniques.

This report is divided into 4 main parts.

• Chapter 1 gives the introduction of both secure multi-party computation and private set
intersection, which includes the definition, the motivation, and the brief overview.

• Chapter 2 is used as a description of some important cryptographic primitives used com-
monly in the private set intersection. Especially, the main technique in our PSI protocol
i.e subfield oblivious linear-function evaluation (subVOLE) is presented in detail in section
2.2.7.

• Chapter 3 describes the state-of-art of PSI by classifying all the types of PSI protocols and
reviews some currently efficient PSI protocols.

• Finally, in chapter 4, we propose a PSI protocol against a semi-honest adversary and its
theoretical comparison with other current PSI protocols.
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Chapter 1

Introduction

1.1 Secure Computation
Secure multiparty computation (MPC) protocols allow a group of parties to interact and calculate a
joint function of their private inputs while exposing only the output. As a result, secure multi-party
computation has progressed from a theoretical interest to a critical tool for developing large-scale
privacy-preserving technologies, from biometric identification [YY13] in national security applica-
tions and face recognition [OPJM10], to computing market-clearing prices in Denmark [BCD+09].
MPC, was introduced in the 1980s by Yao for the two-party case (FOCS 1986) [Yao86] and by
Goldreich, Micali and Wigderson for the multiparty case (STOC 1987) [GMW87], has become
prospective research topic. MPC has recently been efficient enough to be utilized in practice,
transitioning from a theoretical research to a technology used in industry.

In a secure computation protocol, there are a given number of parties (denoted P1, P2, · · · , Pn)
and they own their private input respectively x1, x2, · · · , xn. They wish to join and compute a
public function f(x1, x2, · · · , xn) without revealing their inputs.

Informally speaking, the most fundamental figures that a multi-party computation protocol aims
to ensure are:

• Input Privacy: The messages sent during the protocol’s execution provide no information
about the parties’ private data (x1, x2, · · · , xn). The only information about the private
data that can be deduced is what can be inferred from seeing the function’s output only.

• Correctness: Any proper subset of adversarial colluding parties willing to share information
or deviate from the instructions during the protocol execution should not be able to force
honest parties to output an incorrect result. This correctness goal comes in two flavors: either
the honest parties are guaranteed to compute the correct output (a “robust” protocol), or
they abort if they find an error (a multi-party computation protocol “with abort”).

More technically, a protocol’s security is determined by comparing the outcomes of a real protocol
execution to the outcomes of an ideal computation [BPW04]. In spite of decades of improvements,
secure computation remained until about a decade ago mainly in the realm of theoretical research.
In recent years, however, the amazing progresses both in secure computation, and in computational
power, have brought secure computation to the real world (as witnessed by the creation of several
companies offering secure computation solutions, such as Unbound Security1 and Sharemind2).
However, the real world use of secure computation is currently limited either to scenarios where
the parties have a lot of computational power and time (e.g. major companies), or to scenarios
where the target functions are very simple and run on small inputs.

1www.unboundtech.com
2sharemind.cyber.ee

1

www.unboundtech.com
sharemind.cyber.ee
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1.1.1 Additional Definition Parameters
Adversarial power

The security of multi-parties protocol is defined by against the attack of adversary. We will discuss
the power of the adversary that attacks a executing protocol and classify these adversaries. There
are two main types of adversaries divided by allowed adversarial behaviour:

• Semi-honest adversaries: In the semi-honest setting, the corrupted parties correctly follow
the protocol description but from the internal states (including all messages received) these
corrupted parties try to learn information which is private. Semi-honest adversaries is called
’honest but curious’ or ’passive’.

• Malicious adversaries: In this model, the corrupted parties can arbitrarily deviate from the
protocol specification, according to the adversary’s instructions. If a protocol is security
against malicious adversaries then no attack can violate the security of it. This type of
adversarial model is called ’active’.

Feasibility of MPC

Powerful feasibility findings have been obtained, proving that in the presence of malicious adver-
saries, every distributed computing function may be safely calculated [GMW87]. We will now
summarize the most important of these findings. Let n indicate the number of participating par-
ties and t denote a bound on the number of corrupted parties (where the identity of the corrupted
parties is unknown):

1. For t < n/3 secure multiparty protocols with fairness and guaranteed output delivery can
be achieved for any function with computational security assuming a synchronous point-to-
point network with authenticated channels.

2. For t < n/2 secure multiparty protocols with fairness and guaranteed output delivery can be
achieved for any function with computational and information-theoretic security, assuming
that the parties also have access to a broadcast channel.

3. For t ≥ n/2 secure multiparty protocols (without fairness or guaranteed output delivery)
can be achieved.

In summary, secure multiparty protocols exist for any distributed computing task, but this result
is theoretical. We do not consider about the efficiency.

1.1.2 Secure computation paradigms.
Secure multi-party computation essentially comes in two flavors. The first approach is typically
based upon secret sharing and operates on an arithmetic or a boolean circuit representation of
the computed function, such as in the BGW [BOGW88], the CCD [CCD88] protocols or the
GMW (Goldreich, Micali, and Wigderson) multi-party protocol [GMW87]. While the security
of BGM and CCD bases on the information-theoretic, GMW relies on OT primitive with com-
putational hardness. Secret-sharing-based protocols achieve a lower communication, but require
a large number of rounds of interaction, which increases with the circuit depth of the function.
In this method, the parties secretly share their inputs before evaluating the circuit gate by gate
while maintaining privacy and correctness. They are very efficient but the high number round
complexity makes them unsuitable for the networks, where each party is far away. An alternative
approach represents the function as a garbled circuit. This approach was used in the original
two-party garbled circuit construction of Yao [Yao82] . In the two-party setting, one of the parties
“encrypts” the circuit being evaluated, whereas the other party privately evaluates it. Beaver,
Micali and Rogaway [BMR90] protocol is a variant of Yao’s protocol for multi-party setting.
Yao’s original protocol ensures the privacy of each party’s input and the correctness of the out-
put under the semi-honest model, in which both parties follow the protocol honestly. The first
implementation of Yao’s protocol appears in Fairplay systems [BDNP08] by decomposing the
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function into a sequence of atomic operation - typically, boolean operations such as exclusive ORs
and ANDs. In the years following the introduction of Fairplay, many improvements to Yao’s ba-
sic protocol have been created, in the form of both efficiency improvements and techniques for
active security. These include techniques such as the free XOR method ,cut-and-choose tech-
nique [PSSW09], [KSS12], [FN13], Obvious transfer [IPS08], [LOP11] in which AES was used as
a benchmark for performance tests.
However, despite these improvements, each secure execution of a circuit still requires a large
amount of communication between the participants. We stress that this is an extremely strong
limitation, which kept secure computation for decades in the realm of interesting theoretical ob-
jects with limited hopes of ever becoming practical. With high communication costs, the secure
computation cannot possibly be deployed and used on a large scale for data analysis computations,
which are our main targets in this project. Therefore, the communication cost which is also one
of the main bottlenecks of secure computation should be tacked for adapting to large-scale input
databases.

1.2 Private Set Intersections
Private Set Intersection (PSI) computation is a specific scenario in secure multi-party comput-
ing (MPC) applications. It not only has important theoretical significance but also has great
practical usage. It have been motivated for many real-life applications such as Google runs PSI
together with third-party data providers to find target audiences for advertising and marketing
campaigns [IKN+19] or contact discovery [CLR17]. Private set intersection allows parties to jointly
compute the set of all common elements between the data sets of all parties. In the end of PSI
protocol, one or both parties should get the correct intersection and will get nothing about other’s
data sets outside the set intersection. The ideal functionality of 2-party PSI is present as figure
1.1.

PARAMETERS:

• Two parties: a sender and a receiver.

• Set size n for honest parties and n′ for corrupt parties.

FUNCTIONALITY:

1. Wait for input Y = {y1, y2, . . . , } from the receiver. Abort if the receiver is corrupt
and |Y | > n′.

2. Wait for input X = {x1, x2, . . . , } from the sender. Abort if the sender is corrupt
and |X| > n′.

3. Given output X ∩ Y to the receiver or sender.

Figure 1.1: Ideal functionality of 2-party PSI

1.2.1 Applications
PSI in Privacy-Preserving Analysis of Medical Data

There are various efficient techniques based on PSI that contributes to the development of the
healthcare system. We can not deny the importance of PSI applications for human genomes
testing [BBC+11],to comparing patient information, contact tracing [DPT20] to prevent the spread
of diseases.
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Sharing patient information. As for improving service and facilitating diagnosis, healthcare
providers often wish to exchange information about their common patients. However, due to
privacy regulations such as the Health Insurance Portability and Accountability Act (HIPAA),
they can only share a patient’s record if both providers have obtained the patient’s consent.
Moreover, the two providers may be competitors, and may not wish to leak the identity of the
patients who are not in the set intersection. The malicious PSI protocols or Authorized Private
Set Intersection (APSI) can be used too address this issue [SSS12]. PSI protocols against malicious
adversaries make sure each corrupted provider can not deviate from the protocol, e.g., changing the
information of patients in the input, and output sets. About Authorized Private Set Intersection
(APSI), it ensures that each providers can only use elements certified by a trusted authority in
the intersection protocol.

Privacy-preserving genomics. Genetic testing is a type of medical test that identifies changes
in chromosomes, genes, or proteins. Genomic testing is used to diagnose, monitor, treat, predict
and prevent disease, as well as promote good health in individuals, across communities, and whole
populations. There are 3 important applications of genetic testing: Paternity Tests, Personalized
Medicine, Genetic Compatibility Tests [BBC+11]. Implementing these applications in practice has
been posing a threat to genomic privacy. To address this challenge on privacy, a set of efficient
techniques based on the private set intersection is used efficiently.

Contact tracing. Another concrete application of PSI is for contact tracing to repel an epidemic
such as COVID- 19. Global lockdown measures have been imposed all around the world and
will cause severe social and economic problems. To relax the lockdown measures while keeping
the ability to control the spread of the disease, technical tools for contact tracing have been
introduced [DPT20]. The resulting applications try to determine and notice the smartphone
owner when exposed to the infectors without disclosing the privacy data of users who have been
tested positive. Specifically, PSI is taken advantage of to find the number of elements in the
intersection between the data set of the infected patients from healthcare providers and the users’
data indicating who already are approximately close to them.

1.2.2 Overview
Several techniques have been proposed that realize the PSI functionality, such as the efficient but
insecure naive hashing solution (where the parties hash all entries of their databases and share
the hashes), protocols that require a semi-trusted third party, or two-party PSI protocols (which
have no trusted third party, and no leakage of information like in the naive solution). The earliest
proposed two-party PSI protocols were special-purpose solutions based on public-key cryptography
as the Diffie-Hellman assumption [Sha80, Mea86], which had a prohibitive computational cost.
Later, solutions were proposed using circuit-based generic techniques for secure computation,
that are mostly based on symmetric cryptography [HEK12a] and used hashing technique for
achieving linear communication, [PSTY19,PRTY19]. The most recent and efficient developments
are PSI protocols that are based on oblivious transfer (OT) alone3, and combine the efficiency of
symmetric cryptographic primitives with special purpose optimizations [PSZ14,KKRT16,RR17,
KRTW19, PSWW18, PRTY19, PRTY20, CM20]. Among these protocol, recent works based on
OT [CM20, PRTY19] tried to balance between communication and computation and construct
a lightweight multi-point Obvious Peusdorandom Function (OPRF [FIPR05]), particularly suited
for cloud computing settings. Additionally, there are some semi-honest two-parties protocols
[KKRT16, PRTY19] that take advantage of advanced hashing methods such as Cuckoo hashing
and Bloom filter to reduce the communication. Recently, there has been active work on efficient
secure semi-honest PSI protocol with fast implementations that can process millions of items in
seconds. However, malicious protocols are much slower, the works [RR17,PRTY20], are the best
of in terms of concrete efficiency.

3OT is a secure computation primitive which can be realized extremely efficiently and is used as a building block
in larger protocols.



Chapter 2

Preliminaries

2.1 Notation and Security

2.1.1 Notation
Throughout the paper we use the following notation: let κ, λ denote the computational and
statistical security parameters, respectively. We write [m] to denote a set {1, 2, . . . ,m}. A function
µ(.) is negligible if for every positive polynomial p(.) and all sufficiently large n, it holds that
µ(n) < 1/p(n).
The notation

(
2
1

)
OTtm is used to denote t instances of 1-out-of-2 string OT where strings are m

bits long. The field is denoted Fq field extension of an arbitrary subfield base Fp, where q = pr, p
is a power of prime number. All operations in our paper is computed over the field.
For a vector x = {x1, x2, . . . , xn}, xi is the i′th position in x. Given a matrix T , ti and tj are
corresponding to the i−th column and j−th row of matrix T . If a = a1|| . . . ||an ∈ {0, 1}n and
b = b1|| . . . ||bn ∈ {0, 1}n are two vector then we define ⊕ and . as follows. We use the notion
a ⊕ b to denote the vector (a1 ⊕ b1)|| . . . (an ⊕ bn). Similarly, the notion a.b denotes the vector
(a1.b1)|| . . . ||(an.bn). For c ∈ {0, 1}, c.a denotes the vector (c.a1)|| . . . ||(c.an). We use ||x|| to
denote the Hamming weight of a binary string x.
In this report, all PSI protocol are considered in the 2-party private set intersection PSI with
semi-honest security. The sender Alice and the receiver Bob have 2 input sets X = {x1, . . . , xn1

},
Y = {y1, . . . , yn2

} respectively.

2.1.2 Security model
Simulation paradigm. PSI is a special case of secure computation. The proof of two-party
PSI protocol is followed by security of two-party computation. Security of secure computation
protocol is proved via the simulation paradigm, which is a method of comparing what occurs in
the "real world" to what occurs in a "ideal world" in which the primitive in question is secure
by definition. Simulation paradigm builds a simulator in the alternative world that is secure by
definition, and it creates a view in the actual world for the adversary that is computationally
indistinguishable from its real view.

Definition 2.1 (Computationally indistinguishable) Let {Xn}, {Yn} be sequences of distri-
bution with {Xn}, {Yn} ranging over {0, 1}l(n) for some l(n) = nO(1). {Xn} and {Yn} are computa-
tionally indistinguishable (notation: Xn ≈ Yn) if for every non-uniform polynomial-time algorithm
A there exists a negligible function µ(.) such that for sufficiently large n∣∣Pr[A(Xn) = 1]− Pr[A(Yn) = 1]

∣∣ < µ(n)

Two-party computation. A two-party protocol problem is defined by determining a possibly
random procedure that assigns a pairs of inputs to a pairs of outputs (one for each party). This
procedure is referred to as functionality, and it is denoted by f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗,
where f = (f1, f2). That is, for every pair of inputs x, y ∈ {0, 1}∗, the output is a pair of random

5
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variables (f1(x, y), f2(x, y)). One party (with input x) wishes to learn f1(x, y) and the other (with
input y) wishes to learn f2(x, y).

Simulation for semi-honest adversary. The model considered is a two-party computing
paradigm with static semi-honest adversaries. One of the parties is controlled (statically, at the
beginning of computation) by an adversary who strictly follows to the protocol specification. By
examining the messages it has received and its internal state, it may, nevertheless, attempt to
discover more information than is permitted. Even if the adversary chooses its random tape in
an un-random approach, it may be able to totally disrupt the protocol. Nevertheless, a protocol
that is safe in the presence of semi-honest adversaries ensures that no information is accidentally
leaked. Defining and proving security for semi-honest adversaries is considerably easier than
malicious adversaries since we know exactly what the adversary will do.

Semi-honest security. We begin with the following notation:

• Let f = (f1, f2) be a probabilistic polynomial-time functionality and let π be a two-party
computation protocol for evaluating f .

• The view of the ith party (i ∈ {1, 2}) during an execution of π on (x, y) and security
parameter n is denoted by viewπ

i (x, y, n) and equals (w, ri;mi, 1, . . . ,mi
t), where w ∈ {x, y}

(its input depending on the value of i), ri equals the contents of the ith party’s internal
random tape, and mi, j represents the jth message that it received.

• The output of the i’th party during an execution of π on (x, y) and security parameter n is
denoted by outputπi (x, y, n) and can be computed from its own view of the execution. We de-
note the joint output of both parties by outputπ(x, y, n) = outputπ1 (x, y, n),outputπ2 (x, y, n)).

Definition 2.2 Let f = (f1, f2) be a functionality. We say that π securely computes f against
semi-honest adversaries if there exist probabilistic polynomial-time algorithms S1 and S2 such that

{S1(1n, x, f1(x, y)), f(x, y))}x,y,n ≈ {(viewπ
1 (x, y, n),outputπ(x, y, n))}x,y,n,

{S2(1n, y, f2(x, y)), f(x, y))}x,y,n ≈ {(viewπ
2 (x, y, n),outputπ(x, y, n))}x,y,n,

where x, y ∈ {0, 1}∗ such that |x| = |y|, and n ∈ N

2.2 Preliminaries

2.2.1 Obvious transfer (OT)
OT was introduced by M.Rabin [Rab05], is a central cryptographic primitive in the area of secure
computation, in which the receiver learns nothing more than one string sr from two input strings
s0, s1 of the sender and sender learn nothing about bit r. An oblivious transfer (OT) protocol
is a type of protocol in which a sender transfers one of potentially many pieces of information
to a receiver, but remains oblivious as to what piece (if any) has been transferred. The cost
for constructing OT is expensive so the idea of expanding a small number of OT to obtain large
instances of OT has been developed [Bea96].
When executing m invocations of 1-out-2 OT on l-bit strings ( denoted

(
2
1

)
OTml ), the sender S

holds m message pairs (xj,0, xj,1) with xj,0, xj,1 ∈ {0, 1}l, while the receiver R holds an m-bit
choice vector r. At the end of the protocol, R receives xj,rj but learns nothing about xj,1−rj and
S learns nothing about r. The ideal functionality of OTml is presented in figure 2.1. Many OT
protocols have been proposed in [CO15], [NP01].
To make the oblivious transfer is more efficient, we can use OT extension [IKNP03] and random
OT [NNOB12] [ALSZ13].
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INPUTS:

• The sender S holds m message pairs (xj,0, xj,1) 1 ≤ j ≤ m with xj,0, xj,1 ∈ {0, 1}l.

• The receiver R holds an m-bit choice vector r = (r1, . . . , rm).

OUTPUTS:

• R outputs xj,rj for 1 ≤ j ≤ m.

• S has no output.

Figure 2.1: Ideal functionality of
(
2
1

)
OTml

OT extension

In recent years, OT extension is efficiently deployed to construct PSI protocol with very practical
both communication and computation cost. The first truly practical OT extension is proposed
in [IKNP03]. protocol is state of art for PSI in a semi-honest setting, it is the core idea adapted
to the several protocol [PSZ14,KKRT16,KRTW19,PRTY19,PRTY20,CM20] and obtain the ex-
tremely fast PSI protocols with a balance between communication and computation cost. The(
2
1

)
OTκt (t > κ) can be directly implemented from

(
2
1

)
OTκκ: the sender associates two κ-bit keys to

each pair of messages and obliviously transfer one key of each pair to the receiver. Then, the re-
ceiver stretches two t-bit strings from the two keys of each pair, using a pseudo-random generator,
and sends the XOR of each of these strings and the corresponding message to the receiver. Then,
the

(
2
1

)
OTtm can be obtained by one call

(
2
1

)
OTκt under the assumption of correlation-robust hash

function (section 2.2.3). The total communication cost for reduction from
(
2
1

)
OTtm to

(
2
1

)
OTκκ is

2tm+ 2tκ bits.
An optimization to the protocol of [IKNP03] was proposed in [ALSZ13] (and discovered indepen-
dently in [KK13]. [KK13] protocol replaces the repeating code in [IKNP03] with Walsh-Hadamard
(WH) code to construct OT extension for short strings. This protocol reduce

(
2
1

)
OTtm to

(
2
1

)
OTκκ

with the with t(2κ/ log n + nm) bits of communication, n being a parameter that can be chosen
arbitrarily so as to minimize this costs. While [ALSZ13] describe the OT extension on inputs sat-
isfying some particular conditions. In particular, the communication of the OT extension protocol
can be reduced from 2tm+ 2tκ bits to tm+ tκ bits when the inputs to each OT are correlated.

2.2.2 The random oracle model
A random oracle is an oracle (a theoretical black box) that responds to every unique query with
a (truly) random response chosen uniformly from its output domain. If a query is repeated, it
responds the same way every time that query is submitted. Stated differently, a random oracle is
a mathematical function chosen uniformly at random, that is, a function mapping each possible
query to a (fixed) random response from its output domain. Random oracles as a mathematical
abstraction are typically used when the proof cannot be carried out using weaker assumptions
on the cryptographic hash function. A system that is proven secure when every hash function is
replaced by a random oracle is described as being secure in the random oracle model, as opposed
to secure in the standard model of cryptography.
The efficiency gain in using the random oracle model is particularly true with regards to protocols
for private set intersection. The public-key-based protocols (based on Diffie-Hellman and blind-
RSA) use a hash function H() that must be modeled as a random oracle, or modeled using another
non-standard assumption. The other protocols (the generic protocol, as well as the protocol based
on Bloom filters and the new OT-based protocol) can be implemented without a random oracle
assumption, but in order to speedup the computation of OT in these protocols we must use random
OT extension, whose efficient implementation relies on a function that is typically modeled as a
random oracle.
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2.2.3 Correlation robustness
Our OPRF is proven secure under correlation robustness on the hash function. Correlation robust-
ness was firstly introduced in [IKNP03], later generalized in [KKRT16,PRTY19,KK13,CM20] but
this assumption considered in Hamming weight while our assumption works over any finite field.
We say that H : {0, 1}k → {0, 1} is correlation robust if for a random and independent choice of
(polynomial many) strings s, t1, . . . , tm{0, 1}k, the joint distribution (H(t1 ⊕ s), . . . ,H(tm ⊕ s)) is
pseudorandom given t1, . . . , tm.

Definition 2.3 (Hamming Correlation Robustness) Let H be a hash function with input
length n. Then H is d-Hamming correlation robust if, for any a1, . . . , am, b1, . . . , bm ∈ {0, 1}n
with ‖ bi ‖H≥ d for each i ∈ [m], the following distribution, induced by random sampling of
s← {0, 1}n is pseudorandom. Namely,

(H(a1 ⊕ [b1.s]), . . . ,H(am ⊕ [bm.s])
c≈ (F(a1 ⊕ [b1.s]), . . . ,F(am ⊕ [bm.s])

where F is a random function.

This is a weaker assumption than random oracle model. The [IKNP03] protocol uses this assump-
tion with n = d = κ. In that case, the only valid choice for bi is 1κ and the distribution simplifies
to H(a1 ⊕ s), . . . ,H(am ⊕ s).

Definition 2.4 ((n,Fp,Fpr )-Correlation robustness.) Let Fq be a finite field, q = pr ≈ O(2κ+logn)
where p is power of prime, H be a hash function H : {0, 1}∗ × Fq → {0, 1}v. Then H is a
Fq correlation robust if for any distinct strings t1, t2, . . . , tn ∈ {0, 1}∗; u1, u2, . . . , un ∈ Fp\{0},
v1, v2, . . . , vn ∈ Fq, the following distribution, induced by random sampling of ∆← Fq, is pseudo-
random:

H(t1, v1 −∆u1),H(t2, v2 −∆u2), . . . ,H(tn, vn −∆un)

We state this definition in form of attack game. Given a (n,Fp,Fpr )-correlation robust hash
function H : {0, 1}∗ × Fq → {0, 1}v and for a given an adversary A. A PPT A is unbounded
adversary, can make at most Q queries. The hash function H is secure if the advantage of any
PPT A in the following game is negligible:

1. A chooses a distinct sequence t1, t2, . . . , tn ∈ {0, 1}∗; u1, u2, . . . , un ∈ Fp\{0}, v1, v2, . . . , vn ∈
Fq and then submits this sequence to challenger.

2. Challenger chooses randomly ∆← Fq then gets sequence of strings zi = (ti, vi −∆ui)i≤n ∈
Fq and tosses the coin b← {0, 1}.

• If b = 0, challenger returns to A n strings: H(z1),H(z2), . . . ,H(zn).
• If b = 1, challenger chooses random from uniform distribution n strings of length v and

outputs them to A.

3. The A gets sequence w1, w2, . . . , wn ∈ {0, 1}v. Note that the A can make Q queries then
outputs a bit b′. He wins if b = b′. The advantage of A is defined by:

Adv(A,H) = Pr(A wins)− 1/2 = ε

The adversary can make Q queries to the random oracle in which if a query x is already queried
then it returns H(x) if not a random value is returned. The adversary A queries Q times, each
time A queries an arbitrary sequence of n string in the domain of H. Let L be the list of queries
from A. We can see that ε is negligible under an PPT adversary A. Indeed,

Pr
[
A wins

]
= Pr

[
A wins | ∃i ∈ [n], zi ∈ L

]
+ Pr

[
A wins | @i ∈ [n], zi ∈ L

]
≤ 1 .

∑
i≤n

Pr
[
zi ∈ L

]
+

1

2
. 1

≤ 1

2
+
∑
1≤n

∑
i≤Q

Pr
[
zi = qj

]
=

1

2
+

nQ

q
≤ 1

2
+

Q

2κ
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2.2.4 Obvious pseudorandom function (OPRF)
An oblivious pseudo-random function [FIPR05] is a function F : ({0, 1}κ×{0, 1}σ)→ (⊥, {0, 1}l)
that, given a key k from P1 and an input element x from P2, computes and outputs Fk(x) to P2.
P1 obtains no output and learns no information about x while P2 learns no information about k.
We describe the ideal functionality of OPRF in figure 2.2.

PARAMETERS:

• A pseudorandom function F.

• The receiver R inputs set (x1, . . . , xn) and the sender S inputs nothing.

PROTOCOL:

• The sender S learns a key k.

• The receiver R learns the PRF output (PRFk(x1), . . . ,PRFk(xn))

Figure 2.2: The ideal functionality of OPRF

OPRF is the common approach for PSI, which can construct a balance between communication
and computation cost. The receiver inputs x and obtain the Fk(x) where key k is given by sender
and F is a PRF. The sender has the key so the sender can compute PRF value on any input. A
PSI protocol based on OPRF is constructed by firstly receiver computes the set OPRF for all of
his input, permutes this set and sends to sender, the sender can compare with her PRF set then
output their intersection. The construction of OPRF for PSI protocol can be divided into single
point OPRF and multi-point OPRF. These approaches is discussed detailed in section 3.4. There
exist several installations for OPRF, described in [FIPR05]: based on generic secure computation
techniques (using an AES circuit), based on the Diffie-Hellman assumption, or based on OT.

2.2.5 Hashing techniques
Hashing techniques has provided an important role in constructing PSI protocol. Using hash
functions, the elements in a set can be divided into small bins. Then, the parties can just compare
elements in each bin and output the intersection set. Therefore, for pairwise comparisons, the
average number of comparisons between items can be decreased from O(n2) to O(n). In this
section, we revisit the simple hashing, Cuckoo hashing schemes and also describe how to use both
hashing schemes in the context of PSI. The detailed practical parameter of these hashing schemes
is presented in [PSZ18].

Simple hashing

In the context of PSI, a simple hashing scheme is the simplest but it is very efficient when corporate
with other hashing schemes such that Cuckoo hashing. Given a input set X, a hash function
H : {0, 1}∗ → [1, b] is chosen independently of the input elements and a hash table consists of b
empty bins B1, · · · , Bb, this hashing scheme assigns each element x ∈ X into a bin BH(x). Then
a bin can contain more than one element.
For applying simple hashing in PSI, both parties can map their input set to b bins and then
compare between the elements in each bin. To hire the information of items mapped to bin, we
must conceal the number of items mapped to a bin, the parties must pad their bins with dummy
elements to contain maxb elements. When n = b, maxb = lnn

lnlnn (1 + o(1)).

Cuckoo hashing

Cuckoo hashing scheme [PR04] uses hash functions to map elements into bin such that each bin
contains at most one element. Specifically, it uses k hash functions h1, · · · , hk : {0, 1}∗ → [1, b],
which are chosen randomly and independently of the input elements, to map n elements to b = εn
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bins. A element x firstly is assigned to bin Bh1(x). If this bin contains another element y then y
is evicted to a new bin Bhi(y) where i ∈ [k] is chosen randomly and hi(y) 6= h1(y). The procedure
is continued until no further evictions are required, or until a certain number of relocations have
been performed. In the latter case, the last elements are placed in a stash s.
A lookup in this method is highly efficient since it simply compares x to the k items in k bin:
Bh1(x), · · · , Bhk(x) and to the s items in the stash. The size of the hash table is determined by
the number of hash functions k and the stash size s. The greater the value of k selected, the more
likely the insertion procedure will succeed, and therefore the number of bins b will be reduced.
The greater the value of s, on the other hand, the more insertion failures may be allowed.
There is a problem when using Cuckoo hashing scheme for PSI: the relocations in scheme is random
so an item applies Cuckoo hashing schemes twice with the same parameters can be assigned to
different bins. Therefore, if both parties the S and R use Cuckoo hashing to hash their inputs then
they can not compare and obtain the intersection set. To deal with this problems, the solution is
that one party uses Cuckoo hashing and other uses simple hashing scheme for the same number of
hash functions used in Cuckoo hashing. In addition, we must ensure that the parameter chosen for
Cuckoo hashing is appropriate such that the failure probability is less than 2−λ so the information
of input set is security. Moreover, as mentioned above, when one uses simple hashing it requires
to pad each bin to size maxb using dummy elements and all dummy elements are distinct.
The best performance is obtained when the size of input set of the sender and receiver is equal.
All protocols combining Cuckoo hashing and simple hashing ( [KKRT16, PSSZ15] uses 2 hash
functions to map n elements into 2.4n bins with small size of stash s for the failure probability
O(2−λ).

Bloom Filter-Based PSI

The protocol [DCW13] is based on OT and a novel two-party computation approach , which makes
use of a new variant of Bloom filters that is called garbled Bloom filters. In general, there is no
difference between a garbled Bloom filter and a Bloom filter: it encodes a set of n elements in an
array of length m and it has no false negative and negligible false positive. To add an item, it is
mapped into k index numbers using k randomly uniform hash functions, and the relevant array
positions are set. To query an element, the element is mapped into k index numbers using the
same k hash functions, and the associated array positions are verified.
A Bloom filter has a set of k independent uniform hash functions H = {h0, . . . , hk−1}, each of
which hi uniformly maps items to index numbers in the range [0,m−1]. We use BFS to represent
a Bloom filter parameterized by (m,n, k,H), BFS [i] to denote the bit at index i in BFS .
Firstly, in the array of length [m], all of the array’s bits are set to 0. To enter an element x ∈ S
into the filter, the element is hashed using the k hash functions to obtain the k index numbers. At
all of these indices, the bits in the bit array are set to 1 i.e. set BFS [hi(x)] = 1 for 0 ≤ i ≤ k − 1.
To determine if an item y is in S, y is hashed using the k hash algorithms, and all places y hashes
to are examined. If any of the bits at the places are 0, y is not in S; otherwise, y is most likely in
S.
So a Bloom filter never returns a false negative since hash functions are deterministic and if y
is encoded in the filter then in the query phase every BFS [hi(y)] must be 1. Although it is
conceivable for a false positive to occur, for example if y is not in the set S, yet all BFS [hi(y)] are
set to 1. In the Bloom filter, the chance of a specific bit being 1 in a particular case is given by
p = 1− (1− 1/m)kn, and the upper bound of the false positive probability is:

ε = pk ×

(
1 +O

(
k

p

√
lnm− klnp

m

))

which is negligible in k.
If we have two (m,n, k,H)-Bloom filters that each encode a set of S1 and S2, we can get another
(m,n, k,H)-Bloom filter BFS1∩S2

by bit-wise ANDing BFS1
and BFS2

. The resultant Bloom
filter, on the other hand, generally includes more 1 bits than a Bloom filter created from start
with S1 ∩ S2. Then we’ll need to use a technique called Garbled Bloom Filter (GBF).
To minimize unexpected information leakage while utilizing Bloom filters for PSI, the creators
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of [DCW13] created the Garbled Bloom Filter, a variation of the BF (GBF). A GBF G applies
the same k hash functions as a BF, but instead of single bits, it keeps shares of length l at
each place G[i], for 1 ≤ i ≤ m. These shares are selected uniformly at random, subject to the
requirement that

⊕k
j=0G[hj(x)] = x for every element x contained in the filter G.

To represent a set X with a GBF G, all locations of G are designated as empty at first. After
that, each element x ∈ X is put as follows. First, the insertion algorithm looks for a hash function
tin[1, . . . , k] that is unoccupied by G[ht(x)] (the probability of not finding such a function is equal
to the probability of a false positive in the BF, which is negligible due to the choice of parameters).
All other unoccupied positions G[hj(x)] are assigned to l-bit shares at random. Last but not least,
to achieve a valid sharing of x, G[ht(x)] is set to G[ht(x)] = x⊕(

⊕k
j=1,j 6=tG[hj(x)]). We highlight

that the construction of the GBF cannot be entirely paralleled since existing shares must be re-
used.
In the semi-honest secure PSI protocol of [DCW13], P1 generates a m-bit GBF GX from its set
X and P2 generates a m-bit BF FY from its set Y . P1 and P2 then perform OTml , where for
the i-th OT P1 acts as a sender with input (0, GX[i]) and P2 acts as a receiver with choice bit
FY [i]. Thereby, P2 obtains an intersection GBFG(X∧Y ), for which G(X ∧ Y )[i] = 0 if FY [i] = 0
and G(X ∧Y )[i] = GX [i] if FY [i] = 1. P2 can check whether an element y is in the intersection by

checking whether
k⊕
i=1

X∧YG[hj(x)] is equal to y or not. (Note that P2 cannot perform this check

for any value which is not in its input set, since the probability that it learns all GBF locations
associated with that value is equal to the probability of a false positive, which is negligible due to
the choice of parameters).

2.2.6 Oblivious Key-Value Store (OKVS)
Many recent private set intersection protocols use obvious key value store to hide their input.
[PRTY19] encode input sets as a polynomial or [PRTY20, RS21] use a linear solver technique
which is called PaXoS for mapping a set of input to corresponding value. Informally speaking,
obvious key value store (OKVS) [GPR+21] is a data structure that compactly represents a desired
mapping ki → ri. When the vi values are random, the OKVS data structure hides the ki values
that were used to generate it. The simplest (and size-optimal) OKVS is a polynomial p that is
chosen using interpolation such that p(ki) = vi.

Definition 2.5 A key-value store is parameterized by a set of K of keys, a set V of values, and a
set of function H, and consists of two algorithms:

• EncodeH takes as input a set of (ki, vi) key-value pairs and outputs an object S ( or, with
statistically small probability, an error indicator ⊥.

• DecodeH takes as input an object S, a key k and outputs a value v.

A KVS is correct if, for all A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥6= S ← EncodeH(A) =⇒ DecodeH(S, k) = v

There exists some approaches OKVS for PSI protocols e will discuss these method and their cost.
Normally, given n pairs {(x1, y1), . . . , (xn, yn)}, the Encode algorithm will output the vector S of
lengthm. We use r = m/n to denote the rate encoding which describes how compact the encoding
is, i.e n items can be encoded as m element vector.

Interpolation polynomial

The most well-know method for encoding the input is based on polynomial. This method heavy
replies on interpolation polynomial over a arbitrary field Fp which constructs a polynomial P with
n coefficients in Fq such that P (xi) = yi for all i ∈ [n]. Hence, S is presented by n coefficient
of P and the rate encoding r = 1. This rate is optimal and can help protocol achieve a better
communication overhead when sending the polynomial P .
However, finding polynomial P by polynomial interpolation requires O(n log2 n) time and decoding
n points also requires O(n log2 n) time. Some available methods reduce the time for interpolation
around O(n log n) but it still can be expensive for large n.
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Garble Bloom Filters

A GFB is an array GFB[1, . . . , N ] of strings, associated with a set of hash functions h1, . . . , hk :
{0, 1}∗ → [N ]. For an appropriate parameter, the GFB implements a key-value store, where the
value associated with key xi is:

k⊕
j=1

GFB[hj(xi)] = yi for all i ∈ [n]

To limit the probability by 2−λ, a table with N = nλ log e entries can be used to store n items.
In such situation, λ is the ideal number of hash functions. If we set λ = 40, the table size is about
60n and the number of hash functions is k = 40. Furthermore, by using less hashing [KM08],
each insert requires just two hash functions h1(x) and h2(x). Taking hi(x) = h1(x) + i × h2(x)
simulates the extra k − 2 hash functions hi(x), i ∈ [3, k].
The Bloom filter-based construction has an advantage over the polynomial-based construction in
that the insertion method runs in time O(n) rather than O(n2), and it is also highly efficient
in practice. The communication is still O(n), but the constant coefficient is huge (the actual
communication is 60n items rather than n), and therefore communication might be a bottleneck,
particularly on slow networks.

PaXoS

The most efficient linear solver approach is Probe-and-XOR of Strings (PaXoS), is firstly in-
troduced in [PRTY20]. Its implementation based on Cuckoo graph with efficient encoding and
decoding algorithms. The ideal of PaXoS scheme is combined between Garble Bloom Filter and
Cuckoo hashing to obtain a encoding and decoding algorithms with linear time Recent work [RS21]
has proposed an optimal version of PaXoS.
We generalize the PaXoS algorithms for n pairs {(x1, y1), . . . , (xn, yn)} in a finite group G. Given
an integer m ≤ n, security parameter λ and a matrix M ∈ {0, 1}n×m is chosen dependently of the
input set. The Encode algorithm will outputs P ∈ Gm s.t.

MPT = (y1, . . . , yn)T

The target value (y1, . . . , yn) ∈ G can be arbitrary. It requires the solver to output a solution with
probability 1−O(2−λ).
The matrix M includes n rows such that i-th row is defined by a random function row(xi; r),
where r ∈ {0, 1}κ as a random seed. We obtain 〈row(xi, r),P〉 = yi then Decode(P, xi, r) :=
〈row(xi, r),P〉.
We now present the PaXoS solver [PRTY20] in detail. The matrix M ∈ {0, 1}n×m is constructed
on Cuckoo graph. Recall that Cuckoo hashing uses 2 hash functions h1 and h2 to assign a item x
into either h1(x) or h2(x) position. The matrix M consists of 2 sub-matrices M = M ′|M∗ such
that M ′ ∈ {0, 1}n×m′

where m′ = 2.4n. The sub-matrix M ′ is constructed by 2.4n first columns
of matrixM and the weight of each row ofM ′ is exactly 2. In i−th row of matrixM ′, two position
h1(xi) and h2(xi) is assigned to 1 while other positions is 0. Let G be the graph consisting of m′
vertices V = [m′] and the edge set E = {(c0, c1)|i ∈ [n] ∧M ′i,c0 = M ′i,c1 = 1}. That is, for each
constraint yi = 〈row(zi, r),P〉 = Pc0 + Pc1 + . . . there is an edge between vertices (c0; c1) = ei. G
is called the Cuckoo-graph.
First, let us assume that G has no cycles and therefore consists of one or more trees. This case
can be solved by doing a linear pass over the nodes along tree edges, and assigning values on the
way. In particular:

1. Initialize Pi := 0 for i ∈ [m].

2. Let I ⊆ V s.t. each tree in G has a single vertex in I and I := V \ I.

3. Pick an i ∈ I and for each edge (j; i) ∈ E such that j ∈ Ī, identify ek ∈ E , i.e. M ′k,i =
M ′k,j = 1, and update Pj := yk−Pi. Note that because G is acyclic, Pi will not change value
later. Update I := I ∪ {j}.
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4. Finally, define I := I \ {i}, Ī := Ī ∪ {i} and if I 6= ∅, go back to (3).

This approach does not work if G contains a cycle, because Pj will have already been modified at
some time in step (3). To address this, the solver first determines the so-called 2-core graph G̃,
which is a subgraph of G that only contains the cycles and any paths between them. It is worth
noting that the graph produced by G \ G̃ is acyclic.
The solver uses Gaussian elimination to solve the constraints contained in G̃ = (Ṽ, Ẽ) with the
use of the m−m′ additional columns of M . In particular, Pinkas et al. [PRTY20] show that for
m′ = 2.4n, the size of Ẽ is bounded by d = O(λ) with overwhelming probability. Let the actual
number of edges in G̃ be d < d̃ . They then consider the submatix formed by the last m −m′
columns of M and the rows corresponding to edges in G̃. In their parameterization they set
m = d+ λ+m′. As such M̃ is a (d+ λ)× d̃ random binary matrix. With probability 1−O(2−λ)
there exists an invertible d̃× d̃ submatrix M̃∗ within . The constraints in G̃ can then be solved for
using Gaussian elimination on M̃∗ which requires O(d̃3) = O(λ3) time. The remaining Pi values
corresponding to G̃ and are assigned the value zero, and the remaining constraints in G \ G̃ can
then be solved using the linear time algorithm described above.
The encode and decode algorithms both run in linear time. The rate encoding of PaXoS is r ≈ 2.4,
compared to Grable Bloom Filter, this rate is very efficient.

2.2.7 Subfield VOLE
The notion of a pseudorandom correlation generator (PCG), recently proposed and studied by
Boyle et al. [BCGI18,BCG+19a], enables to generate and store the correlated randomness strings.
The goal of a PCG is to compress long sources of correlated randomness without violating secu-
rity. More concretely, the sender and receiver in a (two-party) PCG scheme hold pair of short
correlated keys, and then they can locally expand these keys without interactions to obtain a pair
of long correlated strings.
In recent works of Boyle et al. [BCGI18, BCG+19b], a concrete type of pseudorandom correla-
tion generator i.e oblivious linear function evaluation (OLE) correlation [ADI+17,NP06, IPS09] is
proposed for the goal of secure computation with silent preprocessing. This PCG is constructed
based on variants of the Learning Parity with Noise assumption. The OLE functionality allows
a receiver to learn a secret linear combination of two field elements held by a sender. A useful
extension of OLE is vector OLE (VOLE), allowing the receiver to learn a linear combination of two
vectors held by the sender.
The approach for generating a VOLE correlation is via reduction to random string OT. A first
implementation of a primal VOLE generator was provided in [SGRR19], while concurrently, Boyle
et al. [BCG+19b] provide an implementation of dual VOLE over binary fields. While [SGRR19]
give a efficient technique for multi-point distributed point function (DPF) and construct VOLE
without replying on hardness of LPN assumption, [BCG+19b] constructs not only VOLE based on
LPN assumption but also OT correlation with two rounds.
The ideal functionality of subfield VOLE is presented in figure 2.3. The functionality of subfield
VOLE is identical with VOLE except the sender learns a vector u in a base field. VOLE, is recently
introduced in [BCG+19b,BCGI18, SGRR19,BCG+19a], enables MPC with silent preprocessing.
VOLE can be constructed with sublinear communication complexity by LPN assumption and a
puncturable pseudorandom function (PPRF).
The construction distributes a pair of seeds to parties allows to locally expand these seeds to the
large instance of VOLE. PPRF enables the party to compute the value of PRF F at any point except
one. Given t is the number of positions non-zero of an error sparse vector e ∈ FNp , [BCG+19a]
uses t times PPRF tree to obtain the secret sharing of (v0, v1) such that:

v1 = v0 + ∆e ∈ FNq (2.1)

where v1 ∈ FNq ,∆ ∈ Fq is given to a party and e, v0 ∈ FNq is held by other party.
puncturable pseudorandom function (PPRF) primitives is a PRF F such that given an input x, and a
PRF key k, one can generate a punctured key k{x} which allows evaluating F at every point except
for x, and does not conceal any information about the value F(k, x). A PPRF can be built from
any length-doubling pseudorandom generator, using a binary tree-based construction [BCG+19b].
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PARAMETERS:

• 2 parties a sender and receiver.

• A finite field Fq where q = pr, p is a power of prime,r integer.

• An integer n the size of output vector.

FUNCTIONALITY:

• The sender gets 2 random vectors u ∈ Fnp ,v ∈ Fnq .

• The receiver receives ∆ ∈ Fq and a vector w such that w = ∆u + v ∈ Fnq .

Figure 2.3: Ideal functionality Fsvole

We will give the sender a random key k and x, and give to the receiver a random point α ∈ [N ],
a punctured key k{x}, and the value z = F(k, α) + x. Given these seeds, the sender and receiver
can now define the expanded outputs, for i ∈ [n]:

v0[i] = F(k, i), v1[i] =

{
F(k, i) i 6= α

z otherwise

These immediately satisfy 2.1, with e as the α-th unit vector. To obtain sharing of sparse e with,
say, t non-zero coordinates, as needed to use LPN, we repeat this t times and XOR together all
t sets of outputs. This correlation 2.1 can be converted to randomness using multiplication each
vector by a public matrix H ∈ FN×np where N = O(n) [BCG+19a]. When p = 2 to get n instances
subVOLE the number of OTs needed is just t logN with the input string of OT are κ bits long.
For p > 2, the implementation requires in addition a single subfield-reverse VOLE on vector of
length t.
Note that in VOLE the sender inputs (u,v) ∈ Fnq × Fnq , the receiver inputs x ∈ Fq and gets w =
ux+v ∈ Fnq . However, in the reverse VOLE functionality, the sender inputs (v, x) ∈ Fnq ×Fq while
the receiver sends u ∈ Fnp and receives w = ux− v ∈ Fnq . The reverse VOLE can be implemented
in several approaches. A direct approach is via homomorphism encryption schemes, which can
be instantiated using Pallier encryption [EFG+09] or (ring)-LWE [DPSZ12]. Another approach
is by reduction from VOLE to string- OTs, first introduced by Gilboa [Gil99] and implemented
by [KOS16]. The idea of Gilboa uses a bit-decomposition to reduce an OLE over the field with l-
bit elements to l instances of OT. There is one efficient approach [ADI+17] uses the same idea of
reduction of Gilboa, based on arithmetic version of "LPN-style" assumptions and an arithmetic
version of a local polynomial-stretch PRG.
The construction of a PCG for OT correlations based on a PCG for subfield VOLE is presented
in figure 2.4. The PCG produces a set of n random 1-out-of-p OTs based on a correlation robust
hash function (section 2.2.3 and the LPN assumption over Fp. For each position i ∈ [n], the sender
receives a pair (ui, v

′
i) where v′i is the OT value corresponding to ui and the receiver p OTs values.

Protocol 2.4 is security under the security of subfield VOLE and correlation hash function. Our
OPRF in section 4 is motivated from this PCG OTs correlation.
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PARAMETERS:

• Security parameter 1κ, integers n, r and prime power p with pr = O(2κ).

• An (n,Fp,Fpr correlation-robust function H : {0, 1}κ × Fpr → {0, 1}κ.

• A subfield VOLE model with parameters (n, p, r).

PROTOCOL:

1. The sender S and receiver R join the subfield VOLE, then :

• The sender gets 2 random vectors u ∈ Fnp ,v′ ∈ Fnq .
• The receiver receives ∆ ∈ Fq and a vector w′ such that w = ∆u + v′ ∈ Fnq .

2. S computes
vi ← H(i, v′i) for i = 1, . . . , n

and outputs (ui, vi).

3. R obtains x ∈ Fq,w′ ∈ Fnq compute:

wi,j ← H(i, w′i − j.x) for i = 1, . . . , n, ∀j ∈ Fp

and outputs {wi,j}i,j

Figure 2.4: PCG for n sets 1-out-p random OT



Chapter 3

State of the art of PSI

Securely intersecting two sets without leaking any information is one of the most prominent prob-
lems in secure computation. Recent works have developed some PSI protocols with an efficient
time in both communication and computation which can be truly used in practice. In this chap-
ter, we revisit all the common approaches for the PSI problem. Several techniques have been
applied to deal with the PSI problem as an efficient but insecure hashing method (both parties
hash their input and compare their hash results). The earliest method used relies on public-key
cryptosystems, such that Diffie-Hellmann or Blind RSA. This method has a small communication
but it requires the parties have a large computation capacity. On the other side, some works try
to adapt the garbled circuit method i.e a generic approach of secure computation to PSI problem,
and then these works can bring a competitive result under a careful construction of garbled cir-
cuits. The most recent and efficient technique is using OT extension to obtain a secure obvious
pseudorandom function OPRF, which can directly deal with PSI problem. We discussed in detail
some fastest PSI protocols based on OTs.

3.1 A naive solution
The easiest approach to deal with PSI problem is applying a cryptographic hash function. Each
party hashes their input and then compare the result of hashing. Although this protocol is very
efficient but it is insecure if the input set is small and has low entropy. One party can run a brute
force attack for all possible values of input set and then compare to the received hashes so the
information of input set of other parties will be revealed.

3.2 Public-key- Based PSI
The major advantage of Public-key based protocols is their simplicity, which makes them compa-
rably easy to implement. However the cost for implement public key is expensive and it requires
a large computation capabilities so this method seems to be efficient when we just consider about
communication.

3.2.1 DH based protocol
A PSI protocol relied on the Diffie-Hellmann (DH) key agreement scheme was firstly proposed
in [HFH99]. This protocol (figure 3.1) is based on the commutative properties of the DH function
and was used for private preference matching. This protocol is very simple to implementation,
can be based on elliptic-curve crypto and has a low communication complexity. However, this
protocol has to compute 4n exponentiation so with the computational security parameter κ = 128,
it requires a high computing power.

16



CHAPTER 3. STATE OF THE ART OF PSI 17

PARAMETERS:

1. Alice has the set {x1, . . . , xn} and Bob has the set {y1, . . . , yn}.

2. H is modeled as a random oracle.

3. p is a 1024 bits prime number.

PROTOCOL:

1. A and B choose randomly 2 number a and b.

2. A permutes set H(x1)a, . . . ,H(xn)a (mod p) and sends it to B.

3. Similarly, B sends H(y1)b, . . . ,H(yn)b (mod p) to A.

4. A computes and sends H(y1)ba, . . . ,H(yn)ba (mod p) to B.

5. B also computes H(x1)ab, . . . ,H(xn)ab (mod p) and send to A.

6. Each party can now count the matches.

Figure 3.1: DH protocol

3.2.2 Blind RSA-based PSI Protocol
Another PSI protocol that uses public-key cryptography (blind-RSA operations) to minimize the
communication cost is represented in [DCT09]. This protocol is efficient for unequal input sets, in
which one party with large computation power as server while other is client with small input set
and limitation about computation. In this protocol, both sender and receiver can locally do some
pre-online computations. The client does not execute any exponentiation throughout the online
phase, but only O(v) on-line modular multiplications in step 4 (Figure 3.2).

To check the correction of protocol, consider that:Kyj = (hyj)
d in Step 1, and, in Step 6:

Kxi
= y′i/Rxi

= (hxi).(Rxi
)e)

d
/Rxi

= (hxi)
d

Then we obtain Ky = Kx iff y = x.
This protocol’s performance is comparable to that of DH-based protocols, however in the online
phase, just the owner of the private key does all of the heavy work.

3.3 Circuit-Based PSI
The generic secure computing protocol enables the secure evaluation of arbitrary functions defined
as Boolean or Arithmetic circuits. Intensive effort has been spent over the last several years to
creating custom protocols for PSI based on homomorphic encryption cryptosystem and other
public-key techniques. The majority believe that the methods based on generic approaches would
be unfeasible. The paper [Yao86,HEK12b] shows that this belief could be not inappropriate. It
creates three types of protocols aimed at different set sizes and domains, all of which are based
on Yao’s general garbled-circuit technique [Yak17]. The results demonstrate that using garbled
circuits carefully leads to solutions that can operate on million-element sets on ordinary PCs and
compete with the fastest customized protocols.

Yao’s Garbled Circuits

The millionaire’s problem proposed by Yao laid the foundation of secure computation. The idea
behind using circuit is that express the evaluated function into Boolean or Arithmetic circuits and
takes the advantage of cryptography primitives to secret sharing. The protocol consists of 6 steps
as follows:
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PARAMETERS:

1. Common input: n, e, d parameters of RSA, two hash functions H; H’.

2. H : {0, 1}∗ → Z∗n is a full-domain hash function.

3. Alice’s input: C = {hx1; . . . ;hxv}, where: hxi = H(xi).

4. Bob’s input: S = {hy1; . . . ;hyw}, where: hyj = H(yj).

5. Alice as client and knows public key e while Bob holds secret key d.

PROTOCOL:
Offline:

1. Bob:

For j ∈ [w], compute: Kyj = (hyj)
d

(mod n) and tj = H′(Kyj )

2. Alice:

For i ∈ [v], compute: Rxi
← Z∗n and yi = hxi.(Rxi

)e (mod n)

Online:

1. Alice sends to Bob: {y1, . . . , yv}

2. Bob:

∀i, compute y′i = (yi)
d

(mod n)

3. Bob then send to Alice {y′1, . . . , y′v}, {t1, . . . , tw}

4. Alice:

∀i, compute Kxi
= y′i/Rxi

and t′i = H′(Kxi
)

5. Alice computes the intersection of {t′1, . . . , t′v} and {t1, . . . , tw} and outputs the
intersection of two input sets.

Figure 3.2: Blind RSA protocol

1. A Boolean circuit with two input gates is used to explain the evaluating function. Both
parties are known the circuit. This step can be completed in advance by a third party.

2. The circuit is garbled (encrypted) by Alice. Alice is known as the garbler.

3. Along with Alice’s encrypted input, Alice transmits the garbled circuit to Bob.

4. Bob must also garble his own input in order to compute the circuit. To that aim, he requires
Alice’s help. Because only the garbler understands how to encrypt. Finally, Bob may use
oblivious transfer to encrypt his input. According to the preceding description, Bob is the
receiver and Alice is the sender in this oblivious transfer.

5. Bob evaluates the circuit (decrypts it) and receives the encrypted outputs. Bob is referred
to as the evaluator.

6. Alice and Bob interact in order to determine the output.
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A circuit-based protocol

All of the circuits are constructed in [Yao86] using Yao’s garbled-circuit approach, which takes
any Boolean circuit and produces a secure protocol for calculating this circuit. The most involved
protocols all use a Sort-Compare-Shuffle architecture. The complexity of computation for these
protocols is O(n log n) with small constant factors. The primary concept is for each party to sort
their set locally before merging their sorted sets into a single sorted list (privately). Then, oblivi-
ously, each adjacent pair of items is compared, with the value maintained if the elements in the pair
are equivalent and a dummy value replaced otherwise. Finally, before revealing the complete list
of matching/dummy items, the resultant list of matching/dummy elements is obliviously mixed.
This shuffling phase is needed because the information about position of the matched items may
leak information of other items in set.

3.4 OT based Protocol
OT is a secure computation primitive which can be realized extremely efficiently and is used as a
building block in larger protocols. However, the cost for constructing OT is expensive so the idea
of expanding a small number of OT to obtain large instances of OT has been developed [Bea96].
OT extension has been applied into many PSI protocol and brings significant improvement to
private set intersection aspects. Almost the currently fastest PSI protocol ( [PSZ14, KKRT16,
RR17,KRTW19,PSWW18,PRTY19,PRTY20,CM20,RS21]) take advantage from OT extension.
The main construct of these protocol is using OT extensions to form a efficiently security OPRF
then apply some masking techniques for the input set to get a security protocol. In this section,
we discuss about some typical PSI protocols based on OT extension, which have best performance
and obtains a balance between computation and communication.

3.4.1 PSI from single point OPRF

Single point OPRF

OT extension became extremely practical by the work of Y. Ishai et al. [IKNP03] to reduce OTlm
to OTκm. [KKRT16] deployed and developed the idea of Y.Ishai et al. to obtain a single point
OPRF. We firstly present the functionality of single point OPRF in figure 4.1.

PARAMETERS:

• There are two parties involved: a sender S and a receiver R.

• The receiver has a input set X = {x1, x2, . . . , xn}, xi ∈ Fq for i ∈ [n].

FUNCTIONALITY:

• Choose a random seed for functionality F : k∗, k1, k2, . . . , kn to the sender.

• Give the set x′ = {F ((k, k1)x1), F ((k, k2), x2), . . . , F ((k, kn), xn)} to the receiver.

Figure 3.3: Ideal Functionality Foprf of batched Obvious PRF

The construction of single point OPRF [KKRT16] is evaluated as below.
Let C(κ, ε) be a pseudorandom code that produces a pseudorandom string such that with proba-
bility at most 2−ε the hamming distance between two codewords is less than or equal to d. and
H be κ hamming correlation robust function. 3.4 is the detail protocol of [KKRT16]. This type
OPRF is called batch related key since we can compute m OPRF values of m input by executing
this protocol one time and each input is related to corresponding key.
The R forms 2 m×k binary matrices T0, T1 such that the XOR of each i−th column of 2 matrices
is equal to C(xi). S and R join the OTkm with the input of sender is vector s ∈ {0, 1}k while the R
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INPUT: R has input set x1, x2, . . . , xm where xi ∈ {0, 1}∗.
PARAMETERS:

• A C(κ, ε) pseudorandom code with the output length k > κ.

• A κ-hamming correlation robust function H.

• An ideal OTkm primitive.

PROTOCOL:

1. S chooses random a string s← {0, 1}k.

2. R forms m× k matrices T0, T1 in the following way:

• T0 is random and t1,j = C(xj)⊕ t0,j for j ∈ [m].

Let ti0, ti1 the i−th column of matrices T0, T1.

3. S and R interact with OTkm in the following way:

• S is consider as receiver and inputs the vector sii∈[k].

• R is sender with input k pair of m bit strings ti0, ti1i∈[k].

• S receivers output qii∈[k].

S obtains m × k matrix Q by taking the vector qi as i−th column of Q. Let qj
denote the j−th row of Q.

4. For all j ∈ [m] S takes (qj , s) as the key kj and OPRF at a point x is established
by:

OPRFkj (x) = H(j, qj ⊕ [C(x).s])

5. For all j ∈ [m] R outputs H(j, t0,j).

Figure 3.4: OPRF protocol from [KKRT16]

inputs k pair of columns of 2 matrices T0, T1. Then, S gets a m× k matrix Q such that:

qj = (t0,j ⊕ t1,j).s)⊕ t0,j = t0,j ⊕ [C(xj).s]

for all j ∈ [m]. Each row of matrix Q is considered as a key to construct a OPRF value and we
always have:

t0,j = qj ⊕ [C(xj).s]

The most heavy cryptographic techniques of this single point OPRF is OT, which is implemented
by public key cryptosystems but this protocol can form m-RK-PRF using only k ≈ 3.5κ OTs
with length of input for each OT m bits where m >> k. k OTs can be efficiently instantiated
by using OT extension. The number of OTs needed is not proportional to the input size so it is
very efficient when we requires a large number of OPRF. However, [KKRT16] is secure when the
pseudorandom code C has enough Hamming weight.

From RK-OPRF to PSI

Ideal functionality of batch single point OPRF shows that when R inputs a set of n elements then
each input of R will be assigned with a OPRF values corresponding to a specific key and the S
holds those n related key. Therefore, before using single point OPRF to PSI protocol, we need to
know the corresponding key of each input and make sure each input will be mapped to at most
one key. This problem is solved by approach using linear decoding techniques to map each input
with exactly one key. One of the most common decoding techniques used is hashing techniques,



CHAPTER 3. STATE OF THE ART OF PSI 21

specific Cuckoo hashing since both the communication and computational cost of linear decoding
by Cuckoo hashing is linear O(n) with a small factor. The first usage of Cuckoo hashing is
presented in [PSSZ15].
The construction PSI protocol from batch RK-OPRF and hashing techniques is mainly described
as figure 3.5. In step 3, we can see that each element of input is evaluated on multiple PRF, using
the specified the number of hash functions using in Cuckoo hashing plus the size of stash s. This
work leads to increase the overhead of both communication and computation. We can get rid of
this obstacle by building a multiple point OPRF.

PARAMETERS:

• Alice and Bob have respectively input set X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , yn}

PROTOCOL:

1. Alice uses Cuckoo hashing to map the input set X into b bins such that each
element in X is assigned with at most one bin. Then Alice obtains a set Xb.

2. Alice and Bob join the single point OPRF, Alice as receiver with input set is Xb

while Bob is sender. Alice will get the set X ′ of b PRF values and Bob receives b
corresponding PRF key.

3. Now for each bin,using simple hashing, Bob computes PRF value on all possible
elements in that bin then permutes and send this whole set to Alice.

4. Alice compares and outputs the intersection set.

Figure 3.5: PSI protocol from batch RK-OPRF

3.4.2 PSI from multi-point OPRF

Multi-point OPRF

Multi-point OPRF allows the sender Alice to learns a pseudorandom function (PRF) F and the
receiver Bob learns the F (yi) for each element in his set {y1, y2, . . . , yn}. Alice will compute
the PRF value on each element in her input set {x1, x2, . . . , xn} and send them to Bob. For an
appropriate choice of parameters for F with high probability we have F (xi) = F (yj) if and only if
xi = yj then Bob can output the intersection of two input sets. Since F is pseudorandom function,
for xi ∈ {x1, x2, . . . , xn} the corresponding F (xi) is indistinguishable to Bob. As a result, Bob
receives no information about items which are not in the intersection set.
As compare to the single point OPRF, the multi-point PRF does not requires to assign each element
to corresponding key. With such a multi-point OPRF it is trivial to achieve PSI. There are some
efficient PSI protocols ( [PRTY19,PRTY20,CM20,RS21] which construct multi-point OPRF from
OT extension and obtain a balance between communication and computation. We will discuss
some of them to analyse their detail techniques as well their strength and weakness.

[PRTY19] protocol

is the work of Pinkas et al. to construct a PSI protocol from multi-party OPRF. The idea
of [PRTY19] is based on the overall construction of the IKNP protocol [IKNP03]. [PRTY19]
proposes a technique called sparse OT extension. The sender has a N random secret values ( N
can be exponential), the receiver can enable to pick obviously a subset k values out of N value
without the disclosing of subset k to sender, with communication costs just proportional to k.
The main protocol of [PRTY19] is present in figure 3.6. We can see for any x ∈ [N ]:

Q(x) = T (x)⊕ s.(T (x)⊕ U(x)) = T (x)⊕ s.R(x)
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PARAMETERS:

• The sender Alice and the receiver Bob have 2 input sets X = {x1, . . . , xn1
}, Y =

{y1, . . . , yn2
} ⊆ [N ] respectively.

• The size l := logF is chosen such that protocol is security under interpolation
polynomial over F.

• A κ Hamming correlation robust function H : {0, 1}l → {0, 1}λ+log(n1n2).

• A PRF F : {0, 1}κ × [N ]→ {0, 1}.

PROTOCOL:

1. S picks random a string s← {0, 1}l.

2. S and R interact with l instances of random OT with input length κ bits in this
way:

• S is consider as receiver and inputs the vector sii∈[l].

• R is sender with input k pair of strings ti, ui ∈ {0, 1}κ.
• S receivers output qi.

3. For y ∈ Y , Bob computes R(y) = T (y)⊕ U(y), where:

T (y) := F (t1, y) ‖ F (t2, y) ‖ . . . ‖ F (tl, y)

U(y) := F (u1, y) ‖ F (u2, y) ‖ . . . ‖ F (ul, y)

4. Bob evaluates a polynomial P (x) is interpolation of {y,R(y)}y∈Y , and sends its
coefficients to Alice.

5. Alice defines Q as follows:

Q(x) := F (q1, x) ‖ F (q2, x) ‖ . . . ‖ F (ql, x)

and sends O = {H(Q(x)⊕ s.P (x)) | x ∈ X} randomly permuted to Bob.

6. Bob outputs {y ∈ Y | H(T (y))) ∈ O

Figure 3.6: [PRTY19] PSI protocol

and in the step 5, Alice compute:

Q(x)⊕ s.P (x) = T (x)⊕ s.(P (x)⊕R(x))

Let consider x ∈ X ∩ Y then P (x) = R(x). Hence, Q(x) = T (x) for all x ∈ X ∩ Y .
Ignoring the communication cost in primitive l instance of random OT,the communication of
[PRTY19] includes sending an interpolation polynomial of n distinct points and a set of n OPRF
value on each element in the input set of sender. Hence, this type of protocol gains a better
communication compared to [KKRT16] protocol. Looking at the parameter, we note that both
[KKRT16] protocol and [PRTY19] protocol use a parameter l which is the width of the OT
extension matrix, but in [KKRT16] this parameter is usually a little bigger.
This protocol relies mainly on computing high-degree polynomials over large finite fields. [PRTY19]
protocol achieves a multi-point OPRF by interpolation and evaluation over large field so this
protocol costs a asymptotically O(n log2 n) computation. To reduce this dominant computation
cost, Pinkas et al. proposes in [PRTY19] 2 version called spot-low (as in figure 3.6)and spot-fast.
Spot-low obtain a optimal communication cost version presented in figure 3.6 but the running time
is slow because it requires to interpolate large polynomial, in which Bob sends the coefficient of a
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large polynomial and Alice sends the set of OPRF value on each item in her input set otherwise
spot-fast obtain a better running time but its communication cost is larger than spot-low in which
Bob uses 2-choice hashing and Alice sends two OPRF values for each element in her input set.

[CM20] protocol

In the single point construction OPRF (figure 3.4), the sender will receive a random s ∈ {0, 1}κ and
different PRF keys kj . However, regardless of which s is picked, OPRFkj (x) = H(j, t0,j). Melissa
Chase et al. [CM20] extends this idea to obtain a multi-point OPRF. The protocol of [CM20] is
presented in figure 3.7.

PARAMETERS:

• The sender Alice and the receiver Bob have 2 input sets X = {x1, . . . , xn1
}, Y =

{y1, . . . , yn2
} respectively.

• Two hash functions H1 : {0, 1}∗ → {0, 1}2κ collision resistant hash function, H2 :
{0, 1}w → {0, 1}λ+logn1n2 a κ-Hamming correlation robust.

• PRF F : {0, 1}κ × {0, 1}2κ → [m]w.

PROTOCOL:

1. Precomputation:

(a) Alice samples a random string s ∈ {0, 1}w.
(b) Bob does the following:

• Initialize amm×w binary matrixD to all 1′s. Denote its columns vectors
by D1, D2, . . . , Dw. Then D1 = D2 = . . . = Dw = 1m.

• Sample a uniformly random PRF key k ∈ {0, 1}κ.
• For each y ∈ Y , compute v = Fk(H1(y)). Set Di[v[i]] = 0 for all i ∈ [m].

2. Obvious Transfer:

(a) Bob randomly samples an m × w binary matrix A ∈ {0, 1}m×w. Compute
matrix B = A⊕D.

(b) Alice and Bob join OTwm in the following way:

• Bob is the sender with input {Ai, Bi}i∈[w].
• Alice is the receiver with input s ∈ {0, 1}w.
• Alice obtains w number ofm− bit strings as the column vectors of matrix
C.

3. OPRF Evaluation

(a) Bob sends the PRF key k to Alice.

(b) For each x ∈ X, Alice computes v = Fk(H1(x)) and its OPRF value φ =
H2(C1[v[1]] ‖ . . . ‖ Cw[v[w]] and sends φ to Bob. Let O be the set of these
OPRF value.

(c) For each y ∈ Y , Bob computes v = Fk(H1(y)) and its OPRF value φ =
H2(A1[v[1]] ‖ . . . ‖ Aw[v[w]] and outputs y if φ ∈ O.

Figure 3.7: [CM20] PSI protocol

The new PRF key in [CM20] includes a matrix C ∈ {0, 1}m×w. To compute the PRF on input
x, [CM20] compute Fk(H1(x) which produces a vector v ∈ [m]w where F pseudorandom function
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and H1 a hash function. Hence, the OPRF value is evaluated as follows:

OPRFC(x) = H2(C1[v[1]] ‖ . . . ‖ Cw[v[w]]

H2 κ correlation robust hash function and for all i ∈ [w] Ci is the i′th column of matrix C.
As in figure 3.7, we can see that for x ∈ X ∩ Y , let v = Fk(H1(y)) then

A1[v[1]] ‖ . . . ‖ Aw[v[w] = B1[v[1]] ‖ . . . ‖ Bw[v[w]

since B = A⊕D and Di[v[i]] = 0 for all i ∈ [m].
Then, for all possible value of s ∈ {0, 1}w, we deduce that x ∈ X ∩ Y if and only if:

OPRFC(x) = OPRFA(x)

The parameter m and w is chosen such that if F is a random function and H1(x) is different for
each x ∈ X ∪ Y . They take m = n and the number of OTs base is w ≈ 4.7κ.
Compare to [KKRT16] [PRTY19], [CM20], it’s PSI protocol is faster than all the other. [CM20]
has a larger number of base OTs than [KKRT16] but it’s PSI protocol do not requires any hashing
techniques to map each item to bin then the communication cost consists of only one OPRF value
of each element in input set. [PRTY19] relies on the interpolation polynomial over large field F
which makes this protocol lower computation than [CM20].

[RS21] protocol

presents the construction for a batched Oblivious Pseudorandom Function (OPRF) relied on
Vector-OLE and the PaXoS linear solver, then use it for achieving PSI protocol from an OPRF.
Firstly, PaXoS is a approach for linear system solvers. The main of PaXoS is to encode the input
sets {z1, . . . , zn} = Z and values {v1, . . . , vn} = V as a vector P ∈ Fm. There will exist a function
Decode such that Decode(P, zi) = vi for i ∈ [n] and is linear with respect to P. PaXoS method is
firstly presented by Pinkas et al. [PRTY20], it obtains O(n) running times but it costs m = 2.4n
to output a solution with probability of success 1−O(2−λ).
Second technique is used is VOLE, is constructed by OTs with sublinear communication cost.
Given a large finite field Fq, to guaranteeing security the size of Fq will be ≈ 2κ. The function-
ality of their VOLE give parties random vectors A′,B,C ∈ Fmq and an element ∆ ∈ Fq such that
C := ∆A′ + B. The PSI receiver will hold (A′,C), while the sender will hold (B,∆).
The receiver has input set Y = {y1, y2, . . . , yn} defines a matrix M ∈ {0, 1}n×m such that:

M =


row(y1, r)
row(y2, r)

. . .
row(yn, r)


where row : Fq × {0, 1}λ → {0, 1}m is random function and r ∈ {0, 1}λ is random seed.
The receiver use (Xo)PaXoS to solve the linear equation:

MP = (H(y0),H(y1), . . . ,H(yn))T

for the unknown P ∈ Fmq and H random oracle. The protocol continues by having receiver sends
A := A′ + P ∈ Fmq to the sender and then sender defines: K = B + ∆A ∈ Fmq .
The sender computes their the PRF function as:

X ′ = {H(Decode(K, x, r)−∆HF(x) + w, x) | x ∈ X}

The receiver outputs the value:

Y ′ := {H(Decode(C, y) + w, y) | y ∈ Y }
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We consider the correctness of [RS21] protocol as figure 3.8. For x ∈ X ∩ Y , we see that:

Decode(K, x, r)−∆HF(x) = Decode(B + P∆ + A′∆, x)−∆HF(x)

= Decode(B + A′∆ + P∆, x)−∆HF(x)

= Decode(C + P∆, x)−∆HF(x)

= Decode(C, x) + ∆Decode(P, x)−∆HF(x)

= Decode(C, x) + ∆HF(x)−∆HF(x)

= Decode(C, x).

Finally, we obtain an OPRF by breaking up the linear correlation using the hash function H.

PARAMETERS:

• The sender Alice and the receiver Bob have 2 input sets X = {x1, . . . , xn1}, Y =
{y1, . . . , yn2} respectively, xi, yj ∈ F for i ∈ [n1], j ∈ [n2].

• A hash function H

PROTOCOL: Upon input (sender; sid; X) from the Sender and (receiver; sid; Y) from
the Receiver, the protocol specifies the following:

1. Alice samples randomly ws ← F and sends cs := HF(ws) to the receiver.

2. Bob samples r ← {0, 1}κ, wr ← F and solves the systems:
row(y1, r)
row(y2, r)

. . .
row(yn, r)

P = (HF(y1), . . . ,HF(yn)

for vector P as a function of their set Y ∈ F.

3. The Sender sends (sender; sid) and the Receiver sends (receiver; sid) to Fvole

with dimension m and |F| ≈ 2κ. The parties respectively receive ∆,B and C :=
A′∆ + B,A′.

4. The Receiver sends r;wr;A := A′ + P to the Sender who defines K := B + A∆..

5. The Sender sends ws to the Receiver who aborts if cs 6= HF(ws). Both parties
define w := wr + ws .

6. The Receiver outputs the set of OPRF values Y ′ := {H(Decode(C, y) +w, y) | y ∈
Y }.

7. The Sender computes the set X ′ = {H(Decode(K, x, r)−∆HF(x) +w, x) | x ∈ X}
and sends X ′ to receiver.

8. Receiver compares X ′, Y ′ and outputs the intersection of their set.

Figure 3.8: [RS21] PSI protocol



Chapter 4

Our contribution

4.1 Our protocol

4.1.1 Our contributions
A batch-related key OPRF.

We construct a batch OPRF based on subVOLE. The communication cost of VOLE is negligible
when n is sufficiently large and we only need to send around (λ+ log n1) bits per element so our
batch-related key OPRF achieves a small communication per OPRF evaluation on random input.
Recently, the approach of Rindall et al. [RS21] combines two cryptographic primitives, VOLE
and a linear solver e.g PaXoS, into a high efficient OPRF and PSI protocol. Using PaXoS gains
better computation but it induces a higher communication cost. Given a large finite field Fq,
to guaranteeing security the size of Fq will be O(2κ+logn). The functionality of their VOLE give
parties random vectors u,v,w ∈ Fmq and an element ∆ ∈ Fq such that w := ∆u + v. The PSI
receiver will hold (u,w), while the sender will hold (v,∆).
The receiver has input set X = {x1, x2, . . . , xn} defines a matrix M ∈ {0, 1}n×m such that:

M =


row(x1, r)
row(x2, r)

. . .
row(xn, r)


where row : Fq × {0, 1}λ → {0, 1}m is random function and r ∈ {0, 1}λ is random seed.
The receiver use (Xo)PaXoS to solve the linear equation:

Mp = (H(x0),H(x1), . . . ,H(xn))T

for the unknown p ∈ Fmq and H random oracle. The protocol continues by having receiver sends
u+p ∈ Fmq to the sender. For the PaXoS linear solver the value ofm ≈ 2.4n, so the communication
cost of this protocol is around 2.4κn and plus the overhead cost to implement a VOLE with
dimension 2.4n. Compare with this, we obtain a batched OPRF on n input in any sufficiently
large field by installing only a subVOLE hybrid model with dim n and sending a random vector
t ∈ Fnp ⊂ Fnq .
Comparing to the batch OPRF [KKRT16,PRTY19] constructing from OT extension, our OPRF
is identical with this of [KKRT16] when obtaining a large instance OPRF values with related key
for each input. However, [KKRT16] uses the assumption of d-Hamming hashing robustness which
leads to the number of OT bases is from 3κ to 4κ even the size of input is small. While [PRTY19]
protocol,is an optimization of [KKRT16], uses less OT bases but it relies heavily on manipulating
high-degree polynomials over large finite fields. Our construction uses only t logN OT bases to
implement subVOLE then it gains a significant cost compare with [KKRT16] and its variant.

26
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A new PSI.

We present a new semi-honest PSI protocol from our OPRF which we believe achieves better
communication and computation as compared with other efficient PSI protocols based on OTs.
Our PSI relying on subfield VOLE and hashing techniques are most closely to [KKRT16,PSSZ15]
using Cuckoo hashing to assign each element of set into the bins and compute OPRF for each bin.
However, our protocol just requires sending λ+log n1 bits per hash element then we use 3 random
functions in Cuckoo hashing without stash and trade-off by increasing the number of bins. We
also propose a PSI version with slightly revealing information of input but it can be efficient in
practice.

4.1.2 Our Fast OPRF
Our OPRF is proven secure under (n,Fp,Fpr )-Correlation robustness on the hash function.

Our variant OPRF

Our OPRF is a variant of OT extension which associate a input x ∈ Fp and a random key k with a
pseudorandom value F (k, x). We present the ideal functionality of Foprf in figure 4.1. Our batched
OPRF allows the receiver gets the PRF value of each input x related to a different random key
while the sender holds these key can compute PRF value on any input.

PARAMETERS:

• There are 2 parties the sender and a receiver.

• The receiver has a input set X = {x1, x2, . . . , xn}, xi ∈ Fq for i ∈ [n].

FUNCTIONALITY:

• Choose a random seed for functionality F : k, k1, k2, . . . , kn to the sender.

• Give the set x′ = {F ((k, k1)x1), F ((k, k2), x2), . . . , F ((k, kn), xn)} to the receiver.

Figure 4.1: Ideal Functionality Foprf of batched Obvious PRF

We now present our OPRF construction based on Fsvole model. Our construction is detail in figure
4.2 and securely realizes the functionality Foprf in figure 4.2. We use a (n,Fp,Fpr )-correlation
robust: H : Fp × Fq → {0, 1}v to construct the pseudorandom output of OPRF. We observe
that if two parties join to subVOLE with inverse role then receiver will get two random vectors
u ∈ Fnp ,v ∈ Fnq , other holds ∆ ∈ Fq,w = ∆u + v ∈ Fnq . Therefore, for all i ∈ [n]:

vi = wi −∆ui ∈ Fq

We assign a element x ∈ Fp with a position j ∈ [n] then:

H(x, vj) = H(x,wj −∆uj)

Consider the pair (∆, wj) which is known by sender is the associated key kj of x, the OPRF(kj , x) =
H(x, vj). Another property is that the sender holds the key can compute the PRF on any input
and receive the same value for input x. To deal with this, receiver sends to other party the value
tj = uj − x. The vector uj ∈ Fp is random which lead to the randomness of tj . Therefore, the
vector t will not reveal any information about u and the receiver’s set to input.
Subsequently, the sender can compute PRF value on any input related to the key kj = (∆, wj) by

PRF(kj , y) = H(y, wj − (y + tj)∆)

By the assumption of hash function H, the security is a guarantee.
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PARAMETERS:

• (n,Fp,Fpr )-Correlation robustness: H : Fp × Fq → {0, 1}v.

• The sender and receiver inputs a set X = {x1, x2, . . . , xn} considered as a vector
x in Fnq .

PROTOCOL:

1. The receiver sends (receiver, sid) and sender sends (sender, sid) to Fsvole dimension
n with inverse role. The receiver gets two random vectors u ∈ Fnp ,v ∈ Fnq and the
sender receives ∆ ∈ Fq, w := ∆u + v ∈ Fnq .

2. The receiver sends a vector t := u− x ∈ Fnp to sender.

3. For j ∈ [n] the receiver outputs:

OPRF((∆, wj), xj) = H(xj , vj)

.

4. For j ∈ [n] the sender output ∆, (wj , j, tj). Subsequently, for each input y ∈ Fq,
sender obtains:

PRF(∆, wj), y) = H(y, wj − (tj + y)∆)

Figure 4.2: Our batched OPRF Πoprf based on subVOLE

Theorem 1 The protocol Πoprf securely realizes the ideal functionality Foprf against a semi-honest
adversary in the correlation robustness hash function over field, Fsvole hybrid model when the
parameter is chosen as described in 4.1.3.

Proof.
Correctness:
By the correction of the protocol Fvole, we obtain:

wi = ∆ui + vi for i ∈ [n]

Therefore,

OPRF((∆, i, wi), xi) = H(xi, vi) = H(xi, wi −∆ui)

= H(xi,∆(ui − xi + xi) = H(xi,∆(ti + xi))

The receiver and sender compute the equal value of OPRF for the same xi related to the one
random key.
Security:
When using the ideal functionality of OPRF and the properties of correlation robustness hashing
function over field, the security is proved by simulation model.
Corrupted Sender.

• The simulator S interacts with the sender as follows:

• S plays the role of Fsvole to get ∆ ∈ Fq,w ∈ Fnq and the outputs ∆, wj , tj for j ∈ [n]

• On behalf of the receiver, S sends a random vector t = (t1, t2, . . . , tn) ∈ Fnp to the sender.
The simulation is perfect.

Corrupted Receiver.

• The simulator R has input (x1, x2, . . . , xn) and receives two random vector u ∈ Fnp and
v ∈ Fnq .



CHAPTER 4. OUR CONTRIBUTION 29

• Protocol is abort if there exist i ∈ [n] such that ui = 0. The size of Fp is chosen such that if
there exists a i ∈ [n] such that ui = 0 then the aborting probability is negligible O(2−λ).

• R takes a uniformly random ∆ ∈ Fq then compute: w = ∆u + v ∈ Fq then as sender R
outputs ∆, (wj , j, tj) for j ∈ [n].

4.1.3 PSI protocol
Alice and Bob have two input sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. ur protocol
PSI figure 4.3 from OPRF is identical with protocol in [PSSZ15] and based on the optimization
of [KKRT16]. However, our protocol just requires sending λ+log n1 bits per hash element then we
use 3 random functions in Cuckoo hashing without stash and trade-off by increasing the number
of bins. Cuckoo hashing maps each element of the input set X to the empty bin B by random
functions. Each element in X is assigned to exactly one bin and each bin has to contain one
element. Therefore, we add the dummy element to the bin which does not consist of any element
of set X.

PARAMETERS:

• An arbitrary subfield Fp ⊆ Fq.

• Alice and Bob have respectively input set X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , yn} considered as vector dimension n in Fp.

• 3 random functions h1, h2, h3 : {0, 1}∗ → [1.27n].

PROTOCOL:

1. Alice uses Cuckoo hashing with 3 given random function to map elements in set
X to the 1.27 bins.

2. Alice joins the protocol Πoprf as a receiver with input set XB = {r1, r2, . . . , r1.27n}
defined as follows:
for j ∈ [1.27n], if bin #j is empty, then set rj to a dummy value; otherwise if x is
in bin #j then set rj = x ‖ i where j = hi(x), i ∈ {1, 2, 3}.

3. Alice obtains 1.27n instances OPRF:

X ′ =
{
OPRF(kj , rj) | rj ∈ XB

}
4. Bob computes the set of 3n PRF output:

Hi =
{
PRF(kj , y ‖ i) | y ∈ Y, j = hi(y)

}
for i ∈ {1, 2, 3}

Then Bob randomly permutes each set and sends them to Alice.

5. Alice finds the intersection:
if x ∈ X is mapped to bin j by function hi then check whether PRF(kj , x ‖ i) ∈ Hi.
Alice outputs the intersection and sends them to Bob.

Figure 4.3: PSI protocol

Specifically, in our protocol, Alice uses Cuckoo hashing [PR04] with 3 random functions: h1, h2, h3 :
X → [m], an empty bin B[1, . . . ,m]. By a high probability all element in set X is mapped to
exactly one bin B[hi(x)] for i ∈ {1, 2, 3}. We add dummy value to bin which is not assigned by
any element. If the size of set X is n then m = 1.27n and no stash needed [PSZ18].
After mapping, Alice expanded her set X to the ordered set contains 1.27n elements. Alice joins
the protocol Πoprf as a receiver with input set XB = {r1, r2, . . . , r1.27n}.
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Alice obtains 1.27n instances OPRF:

X ′ =
{
OPRF(kj , rj) | rj ∈ XB

}
Bob as a sender receives the set of key (k, k1, . . . , k1.27n) then can compute OPRF in any input.
He uses simple hashing with same 3 random functions h1, h2, h3 to map each element y in his set
to 3 bins h1(y), h2(y), h3(y). Therefore, Bob computes the set of 3.n PRF output:

Hi =
{
PRF(kj , y ‖ i) | y ∈ Y, j = hi(y)

}
for i ∈ {1, 2, 3}

Then Bob randomly permutes each set and sends them to Alice. Alice finds common elements
and output the intersection X ∩ Y as follows: if x ∈ X is mapped to bin j by function hi then
check whether PRF(kj , x ‖ i) ∈ Hi.
Obviously, this protocol is secure with semi-honest adversary by the security of OPRF under
the assumption (1.27n,Fp,Fpr )-correlation robust of hash function H. For each y ∈ Y \X the
corresponding output of function PRF(ki, y) are pseudorandom. The correction of protocol based
on the resistant collision of hashing function H i.e F (ki, x) 6= F (kj , y) for x 6= y. This requirement
leads to choosing parameters in section 4.1.3.

Theorem 2 The protocol PSI (figure 4.3) is secure against a semi-honest adversary in the Foprf

hybrid-model.

Proof. Consider a semi-honest sender. The simulator interacts with sender as follow:

• The simulator plays the role of Foprf . The simulator observes and gets the set of key
k, k1, . . . , k1.27n then gives these keys to the receiver.

• Wait for the receiver to send 3n PRF values and sends back the intersection set X ∩ Y to
the receiver.

Consider a semi-honest receiver. The receiver only sends to the sender 3n PRF value of the input
set Y (each element in Y is computed 3 times PRF values). The simulator interacts with receiver
as follows:

• The receiver as the sender in Πoprf gets set of PRF keys k, k1, . . . , k1.27n.

• Let denote Z = X ∩ Y . For ∀z ∈ Z, |Z| = nz, simulator computes 3 hash values of z:
(i1, i2, i3)← (h1(z), h2(z), h3(z)) and then adds PRFk,kij to the set Hj for j ∈ [1, 2, 3].

• Add (n − nz) randomly values to each set Hj for j ∈ [1, 2, 3] such that 3n values obtained
are distinct.

• Simulator permutes and sends each set Hj to the sender.

Choosing Parameters
Under the assumption of (n,Fp,Fpr )-Correlation robustness, the size of our extended field Fq is
≈ 2κ+logn. As discuss in section 4.1.2 the size of Fp need to be large enough for guaranteeing the
probability existence i ∈ [n] such that ui = 0 is approximate O(2−λ). i.e

Pr
(
∃i ∈ [n] : ui = 0

)
= 1−

(
p− 1

p

)n
≤ n

p
≈ O(2−λ)

where n is the output size of Fsvole. Then the size of Fp ≈ 2log(n)+λ.
In the construction of PSI protocol, the Cuckoo hashing is used to map n items to m bins by
3 hash functions. Our PSI protocol requires Cuckoo hashing without stash so the receiver can
compute exactly 3 OPRF values per each element in the input set. To obtain no stash, the number
of bins need to increase to 1.27n for failure probability 2−λ [PSZ18].
The correction of PSI protocol required there is no collision in PRF i.e for x 6= y then PRF(ki, x) 6=
PRF(kj , y). The overall probability of a collision is 2−λ so we take the output domain of PRF is
{0, 1}v where v = λ+ 2 log2(n).
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4.2 Efficient analysis

4.2.1 Theoretical Comparison
In the table 4.1 we show the theoretical communication complexity of our protocol compared
with the KKRT protocol [KKRT16], SpOT protocol [PRTY19], Chase-Miao protocol [CM20],
Rindal-Schoppmann protocol [RS21] in semi-honest setting. This comparison measures how much
communication the protocols require on an idealized network where we do not care about protocol
metadata, realistic encoding, byte alignment, etc.

Protocol Communication
n = n1 = n2

210 212 216 220 224

[KKRT16] 1.2ln1 + (3 + s)(λ+ log(n1n2))n2 1078n 1114n 1042n 1018n 977n

[PRTY19] SpOT-low ln1 + 1.02(λ+ log(n1) + 2)n2 502n 504n 488n 500n 512n

[PRTY19] SpOT-fast l(1 + 1/λ)n1 + 2(λ+ log(n1n2)n2 580n 587n 583n 609n 634n

[CM20] 4.8κn1 + ((λ+ log(n1n2))n2 675n 679n 687n 695n 703n

[RS21] 2.4κn1 + ((λ+ log(n1n2))n2 + 217κn0.051 large large 825n 424n 398n

Our 1.27(λ + log(n1))n1 + 3((λ +
log(n1n2))n2 + t log(1.27n1)256 + 1152t

487n 323n 292n 317n 346n

Table 4.1: Theoretical communication cost of PSI protocols (in bits), using the computational
security κ = 128 and the statistical security λ = 40. Ignores the cost of base OTs ( in [KKRT16,
PRTY19, CM20]) which is not dependent on the length of input sets, n1, n2 are input sizes of
sender and receiver respectively. l is width of OT extension matrix (depends on n1 and each type
of protocol). s is the size of stash using in cuckoo hashing (table 4.2). The parameter of our
protocol is taken from [BCG+19a] where t is error weight.

For the set size range from 220 to 224, our protocol has the least communication of any protocol
we consider: ≈ 50% less than KKRT, less than Chase-Miao and SpOT-fast protocol, and nearly
similar to others. While Rindal-Schoppmann based on a linear solver method to encode the input
set into a linear system and others [KKRT16,PRTY19,CM20] have to use a constant number of
OT extension, ≈ 3.5κ, our protocol simply sends a random vector which considered in a subfield
Fp size λ + log(n1). By the simplicity, we believe that our protocol gains a competitive running
time.
The communication cost of our protocol is 1.27(λ + log(n1))n1 + 3((λ + log(n1n2))n2 plus the
communication for performing subVOLE size 1.27n1. The implementation of VOLE with dimension
n need t log n OTs where the input of OTs with κ bits length and in addition one single call a
reverse VOLE length t over Fq. The most efficient protocol for reverse VOLE need to send v field
elements and do v OTs. [ADI+17] implements the OTs directly from 1–2 OT which means an
OT costs communication of 2 field elements and 1 bit. So we get a total of 3v field elements
(plus v bits, which we can ignore when the field is large). The parameter v is roughly 3t, so
they have 9t field elements to send. Therefore the total communication cost for our protocol is
1.27(λ+ log(n1))n1 + 3((λ+ log(n1n2))n2 + t log n1256 + 9t.128 bits.

n 212 216 220 224

s 6 4 3 2

Table 4.2: The size of stash for failure probability 2−λ [PSZ18].

[KKRT16,PRTY19] derived from [IKNP03], using a small number of OTs to obtains a constant l
OT extension and then constructing a single point OPRF. These protocol use similar parameter
l, around 3.5κ but the parameter in [KKRT16] is slightly larger. They also require sending 3.5κ
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bits per element in OPRF. Cuckoo hashing approach in [KKRT16] gains a better running time
compared with the linear solver method but it results in the need to send (3 + s) values of OPRF
per element in Y . [PRTY19] has two variants for communication-optimized and speed-optimized
but both of them rely heavily on the interpolation encoding method.
[CM20] transforms the idea of single point OPRF in [KKRT16] to multi-point OPRF. This protocol
requires sending around 4.8κ per element, slight higher than [KKRT16] but the sender just needs
to send one value OPRF λ+ log(n1n2) bits per element in set Y .
[RS21] also working on VOLE size κn1 gains an efficient communication cost. They use PaSoX
linear solver with a linear encoding rate is 2.4 to obtain a better computation but it induces a
higher communication cost. They need to implement a VOLE with dimension 2.4n1 and then
they shows the experimentally overhead cost to implementing VOLE size 2.4n1 is 217κ 20

√
n1. This

protocol requires sending κ bits per element while our protocol just slightly larger than log(X).,
Since the VOLE is highly sublinear then the overhead cost per element will decrease when we have
a sufficiently large input size as n1 ≥ 216. [RS21] is not efficient for n ≤ 216 while our is still
efficient until n = 210.
Overall, our protocol based on two main techniques: cuckoo hashing and subVOLE. We use
Cuckoo hashing with 3 hash functions and no stash to assign the input set into 1.27n1 bins and
then protocol requires sending λ+ log n1 bits for each hash element, which is slightly larger than
the size bit of the element. Cuckoo hashing is more efficient compared with other linear solvers
since it obtains small running times. So finding a solution with no stash and minimize the number
of bins can make our protocol better.

4.2.2 Leakage version
We now present a PSI protocol with a weaker security. The communication of our PSI protocol
(section 3) is contributed by sending a masking vector t with length 1.27n in Fp from one party
and 3n OPRF values from another. We propose a protocol called leakage version to reduce the
communication cost by minimizing as much as possible the large field base Fp. In our leakage
version, the size of Fp is slightly larger than the input set size.
Then we describe the ideal functionality of leakage OPRF in figure 4.4. Beyond the receiving the
set of PRF keys, the sender gets X. The set X is randomly samples related to the set X such that
|X| = n1 and for every xi ∈ X we have xi 6= xi for i ∈ [1, . . . , n1].

PARAMETERS:

• There are 2 parties the sender and a receiver.

• The receiver has a input set X = {x1, x2, . . . , xn}, xi ∈ Fq for i ∈ [n].

FUNCTIONALITY:

• For every xi ∈ X randomly samples xi ∈ F \ {xi}i≤n1 . Let denote X = {xi}i≤n1 .

• Choose a random seed for PRF F : k∗, k1, k2, . . . , kn and give these keys and the
set X to the sender.

• Give the set X ′ = {F ((k, k1)x1), F ((k, k2), x2), . . . , F ((k, kn), xn)} to the receiver.

Figure 4.4: The ideal functionality of Floprf

As mentioned in section 4.1.2, we must ensure that all the position in vector u ∈ Fnp are different
from 0. Then for the statistical parameter security λ = 40, the bit length of each element of Fp is
around log(n) + λ. Then, we design the leakage version of our OPRF as follow:

1. Firstly, the receiver sends (receiver, sid) and sender sends (sender, sid) to Fsvole dimension
n with inverse role. The receiver gets two random vectors u ∈ Fnp ,v ∈ Fnq and the sender
receives ∆ ∈ Fq, w := ∆u + v ∈ Fnq .
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2. The receiver checks to make sure that all position in vector u are different from 0 then the
protocol continues as protocol 4.2. If not, receiver will ask the sender to restart step 1.

Following the leakage OPRF, the ideal functionality of leakage PSI is presented in figure 4.5.
Leakage PSI protocol is secure if the sender learns only about the intersection set, the receiver
learns more than the sender information of set X and nothing more.

PARAMETERS:

• Given a finite field F. The sender S has a set X = {x1, . . . , xn1
} ∈ Fn1 and the

receiver R has a set Y = {y1, . . . , yn2} ∈ Fn2 .

FUNCTIONALITY:

1. The protocol waits until gets a set X from S and a set Y from R.

2. For every xi ∈ X randomly samples xi ∈ F \ {xi}i≤n1
. Let denote X = {xi}i≤n1

.

3. Output X ∩ Y, |Y | to S and X ∩ Y,X to R.

Figure 4.5: The ideal functionality of leakage PSI

Our leakage PSI protocol uses leakage OPRF which realizes the ideal functionality of Floprf instead
of the construction of main OPRF (section 4.1.2. We will sketch the proof of security of our leakage
PSI directly from the security of our main PSI.

Theorem 3 The leakage PSI semi-honest adversary securely realizes the ideal functionality FlPSI

against a semi-honest adversary in the correlation robustness hash function over field, Floprf hybrid
model.

Sketch proof of security.
Observe the proof of security of PSI protocol (theorem 2), the proof is described as follows:

• The simulator for the receiver is unchanged.

• However, for corrupted sender, the simulator plays the role in leakage OPRF to get not only
the set of PRF keys but also the set X. After that, the simulator sends all of these values to
the receiver, and the process to simulate is the same.

Instead of choosing Fp for the probability existence i ∈ [n] such that ui = 0 is approximate O(2−λ),
we chooses a higher probability 2−k where k < λ. This work leads to a smaller size of Fp.

• The probability for the existence of ui = 0, i ∈ [n] is 2−k, using linear property of expec-
tation, we averagely need to recall Fsvole for 1 + 2−k times. Hence, the number of times for
restarting Fsvole is sufficient small and the communication cost for subVOLE is sublinear so
we efficiently gain a reduce in communication.

• Because this version requires to recall Fsvole with high probability, the information of the
input set of the receiver will be revealed. Indeed, the sender gets more information about
the vector u because all ui is not equal to 0. Therefore, when sender receives the vector
t = u− x ∈ Fnp as step 3 in protocol 4.2, sender learns the value of xi 6= −ti for all i ∈ [n].
This leakage version can not be totally security but information disclosed is not negligible.
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