
Université Paris Cité
École doctorale Science Informatique de Paris Centre (ED386)

Institut de Recherche en Informatique Fondamentale (UMR 8243)

Efficient Secure Computation
from Correlated Pseudorandomness

ParDUNG BUI

Thèse de doctorat de spécialité informatiqe

Dirigée par
GEOFFROY COUTEAU,
et SOPHIE LAPLANTE

Présentée et soutenue publiquement le 18/03/2025

Devant un jury composé de :

Carsten Baum Associate Professor DTU Compute, Denmark Rapporteur
Benny Pinkas Professor Bar-Ilan University, Israel Rapporteur
Elette Boyle Associate Professor, Reichman University, Israel Examinatrice

Senior Scientist NTT Research, USA
Duong-Hieu Phan Professeur Telecom Paris, France Examinateur
Fabien Laguillaumie Professeur Université de Montpellier, France Examinateur
Peter Scholl Associate Professor Aarhus University, Denmark Examinateur
Geoffroy Couteau Chargé de Recherche CNRS, IRIF, Université Paris Cité Co-directeur de thèse
Sophie Laplante Professeure IRIF, Université Paris Cité Directrice de thèse

Abstract

In this thesis, we put forward advancements in Multi-Party Computation (MPC), enabling parties to
jointly compute arbitrary functions while preserving the privacy of their inputs. Our focus is on
MPC with correlated randomness, where efficiency is improved through correlations generated using
preprocessing. We investigate two key paradigms for generating such randomness: Pseudorandom
Correlation Generators (PCGs) and Pseudorandom Correlation Functions (PCFs). First, we propose
new PCG-based constructions for Private Set Intersection (PSI), achieving either tighter security
or improved performance. We then explore the applications of PCGs and PCFs in Zero-Knowledge
Proofs (ZKPs), addressing both interactive and non-interactive settings. For interactive ZKPs, we
design a privately verifiable protocol for circuit satisfiability with sublinear communication and
efficient computation. In the non-interactive setting, we introduce a new designated-verifier ZKP
(DV-NIZK) leveraging PCF with a public-key structure (PK-PCF). Finally, we introduce a novel MPC
framework for binary circuits, utilizing a PCG optimized for small fields.

Keywords: Multi-Party Computation, Pseudorandom Correlation Generator, Pseudorandom
Correlation Function, Zero-Knowledge Proof.

Résumé

Dans cette thèse, nous explorons les avancées en calcul multipartite sécurisé (MPC), permettant
à plusieurs parties de calculer conjointement des fonctions arbitraires tout en préservant la confi-
dentialité de leurs entrées. Notre étude se concentre sur le MPC avec aléa corrélé, où l’efficacité
est améliorée grâce à des corrélations générées en phase de prétraitement. Nous examinons deux
paradigmes clés pour générer ces corrélations: les Générateurs de Corrélations Pseudoaléatoires
(PCGs) et les Fonctions de Corrélations Pseudoaléatoires (PCFs). Tout d’abord, nous proposons de
nouvelles constructions de PCG pour l’Intersection Privée d’Ensembles (PSI), offrant une sécurité
renforcée ou de meilleures performances. Nous explorons ensuite les applications des PCGs et PCFs
aux preuves à divulgation nulle de connaissance (ZKPs), en couvrant à la fois les cadres interactifs et
non interactifs. Pour les ZKPs interactives, nous concevons un protocole vérifiable de manière privée
pour la satisfaisabilité de circuits, avec une communication sous-linéaire et un calcul efficace. Dans
le cadre non interactif, nous introduisons une nouvelle preuve à divulgation nulle de connaissance
pour vérificateur désigné (DV-NIZK) exploitant les PCF avec une structure à clé publique (PK-PCF).
Enfin, nous introduisons un nouveau cadre MPC pour les circuits binaires, basé sur un PCG optimisé
pour les petits corps finis.

Mots Clés : Calcul Multipartite Sécurisé, Correlation Pseudo-aléatoire, Generateurs de Cor-
relations Pseudo-aléatoires, Fonction Pseudo-aléatoire Correlées, Preuve à Divulgation Nulle de
Connaissance.

Introduction en Français

La cryptographie moderne est devenue un pilier essentiel à l’ère numérique, sécurisant les commu-
nications, protégeant les informations sensibles et garantissant la confidentialité dans un monde
interconnecté. Son champ d’application dépasse le simple chiffrement, englobant une vaste gamme
d’objectifs : la confidentialité, l’intégrité, l’authentification, la non-répudiation et l’anonymat. Ces
objectifs sont atteints grâce à des outils cryptographiques sophistiqués, tels que les algorithmes de
chiffrement, les fonctions de hachage, les signatures numériques et les preuves à divulgation nulle
de connaissance (ZKPs). Parmi ces outils, le calcul multipartite sécurisé (MPC) se distingue comme
une technique révolutionnaire pour une collaboration respectueuse de la vie privée, permettant à
plusieurs parties d’effectuer des calculs sur des données sensibles sans les exposer aux autres parties.

Le MPC est particulièrement efficace dans de nombreuses applications du monde réel. Dans le
domaine de la santé, il facilite l’analyse collaborative des données des patients tout en préservant
leur confidentialité. Par exemple, il permet à différents hôpitaux d’agréger leurs données afin de
poursuivre des études sur des maladies, sans pour autant compromettre les dossiers des patients.
De même, dans le secteur bancaire, les institutions utilisent le MPC pour détecter des fraudes sur
différents comptes tout en protégeant les informations des clients. Une autre application se trouve
dans les recommandations de contenu, où les plateformes de streaming pourraient utiliser le MPC
pour suggérer des films ou des chansons sans accéder directement aux préférences des utilisateurs.
Au-delà de ces exemples, le MPC renforce la gestion des clés cryptographiques en distribuant les
clés de manière sécurisée et permet d’établir le vote électronique en protégeant la confidentialité des
électeurs.

Le Calcul Sécurisé dans le Modèle de Corrélation Aléatoire

Le calcul multipartite sécurisé (MPC), sous-domaine de la cryptographie visant à préserver la con-
fidentialité des informations privées dans le cadre d’une fonctionnalité publique f , permet à N
parties disposant d’entrées privées (x1, . . . , xN) de calculer en toute sécurité f(x1, . . . , xN), tout
en dissimulant les autres informations concernant leurs entrées privées aux coalitions de parties
corrompues.

Le MPC a été introduit dans les travaux fondateurs de Yao [Yao86] et Goldreich, Micali et
Wigderson (GMW) [GMW87], ouvrant la voie à un vaste ensemble de recherches qui ont établi les
bases du calcul multipartite sécurisé.

L’efficacité des protocoles MPC peut être optimisée grâce à un prétraitement indépendant des
entrées. Concrètement, si les parties peuvent générer à l’avance de nombreuses instances de corréla-
tions aléatoires, puis les utiliser dans une phase en ligne, le coût de l’exécution du protocole MPC
est alors considérablement réduit en termes de communication et de calcul. C’est justement le cas
du protocol GMW [GMW87], basé sur le calcul sécurisé via le partage secret. Dans un protocole
MPC basé sur le partage secret, les parties détiennent des parts des entrées et calculent de manière
itérative des parts de la fonction, en utilisant sa répresentation en circuit, porte par porte.

vi Introduction en Français

Comme les portes additives peuvent être calculées localement par les parties détenant les parts
des entrées, seules les portes multiplicatives nécessitent une interaction entre les parties pour être
évaluées. Ainsi, le principal goulot d’étranglement des protocoles MPC provient de la communication
nécessaire pour évaluer les portes multiplicatives dans un circuit.

Cependant, un avantage clé du MPC basé sur le partage secret, identifié pour la première fois
dans les travaux de Beaver [Bea92], réside dans le fait que les multiplications sécurisées peuvent être
prétraitées dans une phase de pré-calcul indépendante des entrées. En particulier, les parties peuvent
générer de manière sécurisée des “triplets de Beaver”, des parts additives de (a, b, a · b) ∈ F3 où F est
un corps fini. Ensuite, pour chaque porte multiplicative à calculer dans la phase en ligne, les parties
peuvent exécuter un protocole rapide de multiplication à sécurité théorie de l’information, utilisant
un triplet de Beaver et impliquant la communication de seulement deux éléments de F par partie.

Ce modèle de calcul sécurisé avec prétraitement, en raison de l’efficacité de la phase en ligne,
constitue la base des protocoles MPC modernes. Cependant, ce paradigme de prétraitement ne fait
que déplacer le goulot d’étranglement de l’inefficacité du MPC vers la phase hors ligne, qui consiste
à générer de nombreuses corrélations aléatoires, telles que les triplets de Beaver. De plus, bien
que la communication hors ligne puisse être peu coûteuse, le stockage d’importantes quantités de
corrélations aléatoires pour chaque interaction future potentielle peut néanmoins représenter un
défi.

Ainsi, une question clé pour un MPC efficace est de savoir si nous pouvons générer des corréla-
tions aléatoires avec une communication sous-linéaire par rapport au nombre de corrélations, tout en
minimisant les besoins en stockage.

Génération de corrélations pseudoaléatoires. Récemment, un nouveau paradigme a émergé,
permettant la génération silencieuse de longues chaînes de pseudoaléa corrélées [BCG+18; BCG+19b;
BCG+19a], éliminant ainsi presque entièrement la communication pendant la phase de prétraitement.
Cela est rendu possible grâce à des primitives cryptographiques, telles que les générateurs de corréla-
tions pseudoaléatoires (PCG) [BCG+19b] et les fonctions corrélées pseudoaléatoires (PCF) [BCG+20a].

Un PCG permet de compresser de longues corrélations en des graines corrélées courtes, qui
peuvent ensuite être localement étendues en instances pseudoaléatoires de la corrélation cible. Plus
formellement, un PCG est un couple d’algorithmes (PCG.Gen,PCG.Expand), où PCG.Gen génère
deux clés courtes (k0, k1), et PCG.Expand(σ, kσ) produit une longue chaîne yσ telle que (y0, y1)
forme des échantillons pseudorandomisés de la corrélation cible. Les PCG permettent un calcul
sécurisé silencieux de la manière suivante : en utilisant un petit protocole distribué pour générer les
clés (k0, k1), deux parties peuvent ensuite les étendre localement en longues chaînes pseudoaléatoires
corrélées sans nécessiter de communication supplémentaire.

Les PCG souffrent toutefois d’une limitation importante : une fois les clés distribuées, les parties
sont contraintes de générer en une seule fois une quantité a priori fixée de corrélations. Les PCF
résolvent ce problème : une PCF est un couple d’algorithmes (PCF.Gen,PCF.Eval), où PCF.Gen
génère deux clés courtes (k0, k1), et PCF.Eval(σ, kσ, x) produit yxσ , où pour chaque nouvelle entrée
x, (yx0 , yx1) apparaît comme un nouvel échantillon de la corrélation cible. Ainsi, après avoir généré
les clés (k0, k1) de manière distribuée une fois pour toutes, deux parties peuvent générer à la volée
une quantité quelconque de corrélations pour leurs calculs sécurisés futurs.

Corrélations utiles pour leMPC. Bien que générer des corrélations lors de la phase de prétraitement
puisse améliorer l’efficacité de la phase en ligne du MPC, il est crucial d’examiner les types concrets
de corrélations à deux parties nécessaires pour les protocoles MPC.

Par exemple, la corrélation de Oblivious Transfer (OT) aléatoire, dans laquelle une partie reçoit
une paire de bits aléatoires (s0, s1) (ou plus généralement une paire de chaîne de bit) et l’autre partie

vii

reçoit la paire (b, sb) pour un bit aléatoire b. La corrélation OT peut servir de base pour des protocoles
MPC généraux sans majorité honnête [GMW87; Yao86]. D’autres types de corrélations utiles pour le
MPC basé sur des circuits arithmétiques incluent les Oblivious Linear Evaluation (OLE) [ADI+17] et
les triplets de multiplication (ou “triplets de Beaver”) [Bea92; DPS+12]. Les travaux récents sur les
PCG et les PCF ont permis des avancées significatives dans la génération d’OT, d’OLE ou de triples
de Beaver :

• Pour la corrélation OLE sur un corps fini F, c’est-à-dire une corrélation à deux parties (r0, r1)
où r0 = (∆, u)←$ F2 et r1 = (v, w) ∈ F2, v ←$ F, et w := ∆u+ v.

• Une autre corrélation utile est l’OLE vectoriel (VOLE), une extension de l’OLE qui peut rem-
placer plusieurs OLE dans certaines applications [ADI+17]. Dans un VOLE de longueur
n, une partie détient (∆,u), et une autre détient (v,w), où ∆ ←$ F, (u,v) ←$ Fn, et
w := ∆u + v ∈ Fn. De plus, l’OT aléatoire peut être réalisé par une corrélation VOLE si
F = F2, ce qui fait que des VOLE basés sur des PCG/PCF efficaces conduisent à des OT basés
sur des PCG.

Principales Contributions sur Le Calcul Sécurisé

La recherche sur les Générateurs de Corrélations Pseudoaléatoires (PCGs) et les Fonctions de Corréla-
tions Pseudoaléatoires (PCFs) a considérablement amélioré l’utilisation pratique du CalculMultipartite
Sécurisé (MPC). En capitalisant sur les avancées de ces outils, nos contributions se déclinent en trois
axes majeurs. Ces contributions sont présentées dans quatre publications [BC23; BCC+24; BCM+24;
BBC+24] et sont présentés en détail dans cette thèse, tandis que d’autres contributions réalisées
durant mon doctorat sont présentées dans l’ordre chronologique de rédaction dans la Section 1.2.4.

Intersection Privée d’Ensembles (PSI)

Le Private Set Intersection (PSI) est un protocole cryptographique essentiel permettant à plusieurs
parties de calculer l’intersection de leurs ensembles de données sans divulguer d’informations
supplémentaires [PSZ14; PSS+15; KKR+16; RR17; KRT+19; PSW+18; PRT+19; PRT+20; CM20; RS21;
GPR+21; RT21a]. Le PSI trouve de nombreuses applications, notamment dans la détection d’attributs
partagés entre ensembles de données ou le partage sécurisé de données entre organisations. Les
récents progrès des techniques basées sur les générateurs de corrélations pseudoaléatoires (PCG)
ont rendu le PSI nettement plus efficace. En exploitant les extensions silencieuses de OT basée sur
PCG, les chercheurs ont réduit les coûts de communication à seulement 247 bits par élément de
base de données, rendant le PSI évolutif et adapté aux grands ensembles de données [RS21]. Ces
optimisations ont établi le PSI comme une composante clé des calculs préservant la confidentialité.

Nous démontrons l’impact significatif des PCGs, tels que le vector-OLE et l’OLE, sur l’amélioration
de l’efficacité de l’Intersection de Sets Privés (PSI) dans Chapter 3. Ces résultats ont été publiés à la
conférence PKC 2023 [BC23] (en collaboration avec Geoffroy Couteau).

Preuve à divulgation nulle de connaissance (ZKP)

Une preuve à divulgation nulle de connaissance (ZKP) est un protocole cryptographique qui permet
à une partie, appelée le prouveur, possédant une information confidentielle (appelée le témoin),
de démontrer à une autre partie, le vérifieur, qu’une déclaration publique donnée est vraie, sans
révéler d’autres informations sur le témoin en dehors de la véracité de la déclaration. Ce concept est
fondamental en cryptographie pour protéger les données et vérifier des déclarations sans exposer
d’informations sensibles. Une ZKP satisfait trois propriétés principales :

viii Introduction en Français

• Consistance (completeness): Si la déclaration est vraie, le prouveur peut convaincre le vérifieur
de ce fait.

• Robustesse (soundness): Si la déclaration est fausse, un prouveur malhonnête ne pourra pas
convaincre le vérifieur.

• Aucun apport d’information (zero knowledge): Le vérifieur n’apprend rien au-delà de la véracité
de la déclaration.

Dans ce travail, nous nous concentrons sur les ZKP dans un cadre à vérifieur désigné, c’est-à-dire
que seul un vérifieur disposant d’une clé désignée peut vérifier la déclaration. Nous distinguons deux
types de ZKP avec vérifieur désigné :

• Preuves interactives à divulgation nulle de connaissance (Interactive ZKPs). Le prouveur et le
vérifieur s’engagent dans un protocole interactif, où le vérifieur pose des défis auxquels le
prouveur répond. Cette interaction nécessite souvent plusieurs tours.

• Preuves non interactives à divulgation nulle de connaissance (DV-NIZKs). Dans une preuve
NIZK, le prouveur peut générer la preuve sans interagir avec le vérifieur. Ce type de preuve
est particulièrement utile dans les systèmes distribués et décentralisés où l’interaction n’est
pas réalisable. Une DV-NIZK réutilisable est une version avancée des preuves DV-NIZK qui
permet à un vérifieur désigné de vérifier plusieurs preuves du même prouveur sans exiger une
nouvelle configuration pour chaque preuve.

Preuves ZKP pour la satisfaisabilité de circuits basées sur des PCG sous-linéaires. En
s’appuyant sur la génération efficace et à la volée de VOLE basées sur des PCG, des travaux ré-
cents [BMR+21; WYK+21; YSW+21] ont permis des avancées significatives dans les preuves à
divulgation nulle de connaissance pour la satisfaisabilité de circuits. Ces ZKP utilisent des sché-
mas d’engagement interactifs pour s’engager indépendamment sur chaque valeur des fils dans le
circuit, suivis de vérifications de cohérence avec un surcoût minimal. Bien que la complexité de
communication des ZKP générales basées sur VOLE évolue linéairement avec la taille du circuit, elles
maintiennent un débit élevé grâce aux opérations sous-jacentes légères. Ces approches mettent en
avant l’efficacité des PCGs dans le cadre des applications pratiques de ZKP.

Nous proposons des constructions de Preuves à Divulgation Nulle de Connaissance avec Vérifieur
Désigné, y compris des ZKP basés sur des PCGs efficaces pour les Circuits Généraux avec communi-
cation sous-linéaire dans Chapter 4 (Section 4.1). Ces résultats sont publiés au Journal of Cryptology
2024 [BCC+24] (co-auteurs Haotian Chu, Geoffroy Couteau, Xiao Wang, Chenkai Weng, Kang Yang
et Yu Yu).

Designated-Verifier NIZK à partir de PCFs à Clé Publique. La génération silencieuse de cor-
rélations aléatoires à partir de PCGs ou PCFs nécessite que deux parties participent à un protocole
interactif pour générer de manière sécurisée les clés PCG/PCF. Les PCFs à clés publiques réduisent
cette phase interactive au strict minimum en la remplaçant par une configuration à clés publiques.
Plus précisément, après avoir publié leurs clés publiques en ligne, n’importe quelle paire de parties
sur un réseau peut commencer à générer des corrélations aléatoires sans aucune interaction supplé-
mentaire au-delà de l’infrastructure de clés publiques (PKI). Il est bien établi que les corrélations
d’OT sont utiles dans la conception de nombreux primitives ou constructions cryptographiques, y
compris les DV-NIZKs [LQR+19; CDI+19]. Ainsi, en supposant l’existence d’une PCF à clés publiques
efficace pour l’OT avec une interaction minimale, une question naturelle se pose : peut-on concevoir
un schéma DV-NIZK efficace ?

ix

Nous montrons que les PCFs à clé publique peuvent servir de bloc de construction pour concevoir
des preuves à divulgation nulle de connaissance non-interactives à vérifieur désigné réutilisables
(DV-NIZK) en boîte noire dans Chapter 4 (Section 4.2). Ces résultats sont publiés à la conférence
EUROCRYPT 2024 [BCM+24] (co-auteurs Geoffroy Couteau, Pierre Meyer, Alain Passelègue et
Mahshid Riahinia).

MPC pour circuit booléen dans le modèle de prétraitement

L’évaluation efficace des circuits booléens est cruciale pour de nombreuses applications cryp-
tographiques. Les circuits booléens représentent des fonctions en format binaire, et leur évaluation
sécurisée nécessite des ressources computationnelles importantes. Contrairement au calcul sécurisé
des circuits arithmétiques sur de grands corps, la méthode la plus rapide pour exécuter les protocoles
MPC à N parties pour les circuits booléens reste la méthode “naïve” de génération de nombreux OT
pour chaque pair de partie, avec un coût de Ω(m ·N2) bits pourm triplets de Beaver. Dans le cadre à
deux parties, les triplets de Beaver à deux parties peuvent être générés de manière très efficace grâce
à une ligne de travaux récents [BCG+18; BCG+19b; BCG+19a] sur l’extension silencieuse d’OT. La
situation, en revanche, est beaucoup moins satisfaisante pour le cadre de la computation sécurisée de
circuits booléens avec un nombre plus élevé de parties.

Dans le Chapter 5, nous proposons un paradigme, F4OLEAGE, dans lequel nous introduisons des
modèles de prétraitement efficaces pour les circuits booléens, en générant des millions de triplets
Beaver par seconde. En exploitant des générateurs programmables de corrélations pseudoaléatoires
(PCGs), ces méthodes étendent les avantages de l’OT silencieux aux environnements multipartites,
les rendant particulièrement adaptés à des calculs complexes impliquant de nombreux participants.

Ces résultats sont publiés dans les actes de la conférence ASIACRYPT 2024 (co-auteurs Maxime
Bombar, Geoffroy Couteau, Alain Couvreur, Clément Ducros et Sacha Servan-Schreiber).

Acknowledgement

As I reach the end of my PhD journey, I find myself reflecting on the many people who have
supported, guided, and encouraged me along the way. Writing this thesis has been both one of the
most challenging and rewarding experiences of my life, and I truly could not have done it alone. I am
deeply grateful to everyone who has been part of this journey—whether through their mentorship,
collaboration, or simply their unwavering support.

First and foremost, I want to express my deepest gratitude to Geoffroy for being an incredible
advisor. It has truly been an honor to work with you over the past four years. From the very
beginning, you have been patient, supportive, and always willing to guide me, helping me grow from
a second-year master’s intern to where I am today. I’ve learned so much from you—not just about
conducting research properly and developing new ideas, but also about managing multiple projects
at once. Your ability to juggle so many responsibilities while staying thoughtful and insightful
has always amazed me. The opportunities you provided to work on diverse projects have been
invaluable, allowing me to grow both academically and personally. Your patience, guidance, and
constant support have meant so much to me. No matter how many questions I had or how stuck I
felt, you were always there to listen, offer advice, and help me move forward. I deeply appreciate
your mentorship and the trust you placed in me. You always encouraged me to explore topics I
was passionate about and to collaborate with people I wanted to work with. That independence,
combined with your constant support, helped me gain confidence in my own ideas and research. For
all of this and more, thank you. I couldn’t have asked for a better mentor, and I’m truly grateful for
everything I’ve learned from you.

From time to time, I like to reflect on and appreciate the people who have given me opportunities
and taught me valuable lessons. First and foremost, I want to sincerely thank Hieu for giving me
the chance to do a summer internship during my first year of my master’s. That opportunity was
invaluable, as it was my first step toward learning how to do research. I am also deeply grateful for
all the support and guidance throughout my PhD journey. Your encouragement has meant a lot to
me, and I truly appreciate everything you have done—not only for me but also for always supporting
the Vietnamese community and inspiring us to pursue cryptography. Next, I would like to thank
Nigel for allowing me to join the COSIC group in the summer of 2023 when I was just a first-year
PhD student. This opportunity allowed me to work with amazing people, helping me learn how
to conduct research independently and understand how proactive a PhD student should be. For
the summer of 2024, I am incredibly grateful to Masa for welcoming me to NTT and giving me the
chance to work together. Thank you for taking the time to have weekly discussions with me during
the summer break, for answering all my random questions, and for always being open to exchanging
ideas. I deeply admire your sharp thinking, your energy, and your ability to refine and elevate even
the simplest ideas. Thanks also for letting me be part of projects that have helped me grow and learn
so much. Finally, I would like to express my gratitude to Benny and Carsten for agreeing to be my
reviewers and for taking the time to evaluate my manuscript. I also want to thank Elette, Fabien,

xii Acknowledgement

Hieu, Peter, and Sophie for being part of my jury and for reading my manuscript. Your time and
effort are truly appreciated.

My academic journey would not have been complete without the support of my co-authors
and collaborators. I would like to express my sincere gratitude to Kelong for being an incredible
companion during the summer of 2023 when I was interning at COSIC. Thank you for spending time
working with me and for setting an example of how proactive and hardworking a PhD student should
be. I learned so much from you, and that summer marked a turning point in my PhD journey. I am
also deeply grateful to all my co-authors and everyone I’ve had the opportunity to collaborate with
on various projects. Your insights, support, and contributions have enriched my research experience
in countless ways. I also want to extend my thanks to everyone I’ve had discussions with and met
at conferences and seminars. Every conversation has been valuable, and I’ve gained so much from
these exchanges.

I’ve always considered myself lucky to be surrounded by amazing friends. I want to thank the
Crypto team at IRIF, including all the postdocs, PhDs, and both long-term and short-term visitors.
Thank you for the weekly beers, the discussions, and all the fun stories we’ve shared. These moments
have provided me with invaluable insights and endless encouragement. A special thanks to Clément
and Eliana for being there with me throughout these four years, from the moment we started our
PhDs together. I’d also like to thank the IRIF team as well as my officemates, especially Eliana and
Maël, for the lunches and the coffees we shared after lunch every day, the seminars we attended
together, the discussions we’ve had, and all the advice—both personal and academic—that I received
from everyone. A special thanks to Hang for being my only Vietnamese friend at IRIF. Back in the
summer of 2024, I’m grateful to the NTT team, the postdocs and interns, for spending time with me
every week over a few months—hanging out and having fun as we explored Japan. Those moments
were so much fun and a great way to bond. Finally, I want to thank all my Vietnamese friends I’ve
met throughout my master’s, within the Vietnamese crypto community, and at conferences as well
as in daily life. Your support and the shared experiences have been a constant source of motivation
as I’ve worked to complete this journey.

Last but not least, I want to express my deep gratitude to my family for always supporting me
and allowing me to pursue what I’m passionate about. Thank you for trusting me, for letting me
leave home at the age of 15 to follow my dreams, and for giving me the opportunity to come to
France to continue my journey.

Contents

Abstract i

Résumé iii

Introduction en Français v

Acknowledgement xi

1 Introduction 1
1.1 Secure Multi-Party Computation (MPC) . 2

1.1.1 Secure Computation in the Correlated Randomness Model 3
1.1.2 Practical Secure Computation . 5

1.2 Our Contribution . 8
1.2.1 Improving PSI for Set with Small Entries [BC23] 8
1.2.2 Efficient Designated-Verifier Zero-Knowledge Proof [BCC+24; BCM+24] . . 9
1.2.3 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits [BBC+24] 9
1.2.4 Other Contributions . 10

1.3 Organization of this Thesis . 13

2 Preliminaries 15
2.1 Notations . 16
2.2 Cryptographic Definitions . 17

2.2.1 Universal Composability (UC) . 17
2.2.2 Commitment Schemes . 18
2.2.3 Information-Theoretic Message Authentication Codes (ITMACs) 18

2.3 Computational Hardness Assumptions . 19
2.3.1 Discrete-Logarithm-Based Assumptions . 19
2.3.2 Decisional Composite Residuosity Assumption 20
2.3.3 Learning Parity with Noise (LPN) . 20
2.3.4 Ring Learning Parity with Noise (Ring-LPN) 21
2.3.5 Quasi-Abelian Syndrome Decoding Problem (QA-SD) 22

2.4 (Constrained) Pseudorandom Function (PRF) . 23
2.4.1 Pseudorandom Functions . 23
2.4.2 Constrained Pseudorandom Functions . 24

2.5 Function Secret Sharing (FSS) . 25

xiv CONTENTS

2.6 Pseudorandom Correlation Generators (PCGs) . 26
2.6.1 Defining Pseudorandom Correlation Generators 26
2.6.2 Vector Oblivious Linear Evaluation (Vector OLE) 27
2.6.3 Oblivious Linear Evaluation (OLE) . 28

2.7 Pseudorandom Correlation Functions (PCFs) . 29
2.7.1 Weak Pseudorandom Correlation Functions (wPCFs) 30
2.7.2 Strong Pseudorandom Correlation Functions 31

2.8 Designated-Verifier Zero-Knowledge Proofs . 32
2.8.1 Privately Verifiable ZKPs . 33
2.8.2 Non-Interactive Zero-Knowledge Proofs (NIZKs) 33

2.9 Ideal Functionalities . 36
2.9.1 Ideal Functionality of PSI . 36
2.9.2 Ideal Functionalities for Interactive ZKPs . 36

3 Private Set Intersection 39
3.1 Motivations and Related Works . 40
3.2 Detailed Contributions . 42
3.3 Technical Overview . 46

3.3.1 New sVOLE-Based PSI for Databases with Small Entries 46
3.3.2 Malicious Security . 49

3.4 PSI from Subfield-VOLE . 50
3.4.1 Membership Batched OPRF . 50
3.4.2 Semi-honest PSI from mOPRF . 54
3.4.3 Malicious PSI from mOPRF . 58
3.4.4 Malicious Dual Execution . 60

3.5 Standard PSI from subfield-ring OLE . 63
3.5.1 Semi-Honest Batch Non-Interactive PSI from Subfield Ring-OLE 64
3.5.2 Maliciously Secure PSI in the Standard Model 66

4 Efficient Designated-Verifier Zero-Knowledge Proofs 71
4.1 Sublinear PCG-based ZKP for General Circuits . 71

4.1.1 Motivation and Related Works . 72
4.1.2 Detailed Contributions . 73
4.1.3 Technical Overview . 75
4.1.4 Generic Compiler of ZK Proofs from SIMD Circuits to Arbitrary Circuits . . 79
4.1.5 Generic ZK for Limited-Memory . 83
4.1.6 Sublinear Designated-Verifier ZK . 84

4.2 DV-NIZK from Public-Key PCF-based OT . 88
4.2.1 Motivations and Related Works . 88
4.2.2 Detailed Contributions . 90
4.2.3 Construction of Reusable DV-NIZK . 91
4.2.4 Efficient Public-Key PCF-based OT . 97
4.2.5 Concrete Instantiation of DV-NIZK . 104

CONTENTS xv

5 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits 111
5.1 Motivation and Related Works . 112
5.2 Detailed Contributions . 114
5.3 Technical Overview . 115

5.3.1 Background: Secure MPC from PCGs . 116
5.3.2 Constructing Programmable PCGs . 117
5.3.3 F2-triples from F4-triples . 119
5.3.4 Improved Protocol from F4-OLEs for N = 2 119
5.3.5 Fast Programmable PCG for F4-OLEs . 120
5.3.6 Distributed Seed Generation . 122

5.4 A Fast PCG for F4-OLEs . 124
5.4.1 PCGs from QA-SD Assumption . 124
5.4.2 PCGs over F4 from QA-SD Assumption . 125
5.4.3 Optimizations . 128

5.5 Distributed Seed Generation . 131
5.5.1 A Ternary Distributed Point Function . 131
5.5.2 Distributed DPF Key Generation . 135

5.6 Implementation and Evaluation . 143
5.7 N-party MPC with Preprocessing from F4-OLEs . 145

5.7.1 Secure Computation in the FcBT-Hybrid Model 145
5.7.2 Improved Protocol for N = 2 Parties . 147

5.8 Faster Seed Expansion from Hashing . 148
5.8.1 Faster Seed Expansion . 148
5.8.2 Application of OLE over F4 to Silent OT Extension 152

6 Conclusion 155
6.1 Conclusion . 155
6.2 Open Questions . 156

List of Figures 158

List of Tables 160

Bibliography 161

Chapter 1
Introduction

Secure Communication refers to the practice of exchanging information between two or more
parties in such a way that no unauthorized third party can intercept, understand, or tamper with the
communication. The goal is to protect the privacy and integrity of the information being shared.
Secure communication is crucial because it underpins a wide range of real-life applications.

• Online Banking. When you access your bank account online, secure communication ensures
that your login details, transactions, and personal data are kept private.

• Messaging Apps. Apps like WhatsApp or Signal use secure communication to ensure that only
you and the person you are communicating with can read your messages, preventing others
(like adversaries) from spying on your conversations.

• Secure Websites. When you visit websites that require sensitive information (like online
shopping sites or social media), the use of “https://” in the URL indicates that the communication
between your browser and the website is encrypted, protecting your data.

In summary, secure communication is all about ensuring that the information you share stays
private, accurate, and safe from tampering or eavesdropping, whether you are sending a message,
conducting business transactions, or sharing personal data. Secure communication is first realized
using encryption. Secure communication is realized through encryption. Encryption involves using a
special code (the encryption algorithm) to scramble the contents of a message. Only the person with
the correct “key” can unscramble (decrypt) it, ensuring that even if the message is intercepted, it
remains unreadable to unauthorized parties.

Modern Cryptography is the study and application of mathematical techniques to ensure the
security and integrity of information in the digital age. It is not just about hiding information (encryp-
tion) but also includes many different security goals and cryptographic tools. Modern cryptography
is foundational for securing communication, protecting data, enabling digital trust, and ensuring
privacy in an increasingly interconnected world.

The objectives of modern cryptography can be categorized into five key areas:
• Confidentiality: Ensuring that information is accessible only to authorized parties (e.g., symmetric-
key and public-key encryption).

• Integrity: Guaranteeing that data remains private during transmission or storage (e.g., hash
functions, message authentication codes).

2 Introduction

• Authentication: Verifying the identities of parties in a communication (e.g., digital signatures,
public-key certificates).

• Non-repudiation: Ensuring that parties cannot deny their involvement in a communication or
transaction (e.g., commitment schemes, digital signatures).

• Privacy and Anonymity: Protecting sensitive information and the identities of participants
(e.g., zero-knowledge proofs, ring signatures, threshold-ring signatures).

Among the various branches of modern cryptography, cryptographic protocols play a pivotal
role. These protocols combine cryptographic primitives—such as encryption, hash functions, and
digital signatures—to achieve specific security objectives, including confidentiality, integrity, and
authentication, in a structured and reliable manner.

1.1 Secure Multi-Party Computation (MPC)

Multi-party computation (MPC) is a cryptographic technique that enables multiple organizations
or parties to work together on calculations on sensitive data, without actually sharing any private
information. This is incredibly valuable in privacy-preserving applications because it allows for
collaborative analysis while protecting individual data. Here are some specific applications, along
with real-world examples:

Healthcare Data Analysis. In healthcare, hospitals often need to analyze data collectively to find
patterns or treatments without exposing individual patient records. UsingMPC, hospitals can securely
compute statistics or train models on patient data without compromising privacy. For instance, the
Enigma platform [Nat+20] by the Initiative for Cryptocurrencies and Contracts (IC3) allows medical
institutions to aggregate data across hospitals securely to study disease trends, ensuring patient
information remains confidential.

Detecting Fraud in Banking. Safely sharing suspicious activities of banks, like JP Morgan, that are
using MPC to collaboratively detect fraud without exposing their customer data [Kul24]. Through
MPC, banks can securely compare suspicious accounts without revealing full account information,
making it easier to identify common fraud across institutions. Only the necessary information is
shared, enabling enhanced fraud detection while keeping customer data private.

Making Personalized Recommendations Without Compromising Privacy. For personalized recommen-
dations (like movie or song suggestions), streaming services could combine their data using MPC
without directly accessing each user’s preferences. Google has explored this with MPC-based private
information retrieval [Goo23], allowing platforms to recommend content based on broader trends
without directly accessing individual user data. This way, services can make relevant suggestions
without needing full access to private data.

Secure Key Management with Distributed Keys. IBM leverages MPC in threshold cryptography for
secure key management [IBM21]. Sensitive keys are split and stored across multiple servers, allowing
cryptographic operations (like signing data) without ever bringing the full key together in one place.
This approach reduces the risk of key exposure, making it a useful example of MPC’s use in enhancing
security.

1.1 Secure Multi-Party Computation (MPC) 3

Anonymous Voting in Elections. MPC can also be applied in secure electronic voting. Denmark’s
exploration of MPC in elections demonstrated how votes could be counted while protecting individual
privacy [BCD+09]. Through MPC, voters can submit their choices anonymously, and the overall
tally is calculated without revealing who voted for what, thus maintaining both transparency and
confidentiality.

These examples show how MPC allows multiple parties to collaborate securely, obtaining useful
results from private data without exposing that data. By enabling secure, private collaboration in
healthcare, finance, content recommendations, key management, and even voting, MPC is helping
organizations to improve user-privacy while still achieving valuable outcomes.

In the next two sections, we survey the basics of multi-party computation (MPC) in cryptography
and explore the motivation for executing MPC within the correlated randomness model, as well as
the limitations associated with this approach. We then present our contributions, which include
demonstrating the concrete efficiency gains in MPC when utilizing correlated randomness and
addressing some of the primary limitations inherent in this approach.

1.1.1 Secure Computation in the Correlated Randomness Model

Secure multiparty computation (MPC), which is a subfield of cryptography whose goal is to protect
private information, for a public functionality f allowsN parties with private inputs (x1, . . . , xN) to
securely compute f(x1, . . . , xN), while concealing all other information about their private inputs
to coalitions of corrupted parties. MPC protocol was introduced in the seminal work of Yao [Yao86]
and later in the work of Goldreich, Micali, and Wigderson (GMW) [GMW87], and has since led to a
rich body of work developing the foundations of MPC.

The efficiency of multiparty computation protocols can be optimized via input-independent
preprocessing. Specifically, once parties can generate many instances of random correlations in
advance, later using them in the online phase then the cost of executing MPC protocol is significantly
reduced in both communication and computation. For example, the GMW framework [GMW87],
which is known as secret-sharing-based secure computation. The parties hold shares of the inputs
and iteratively compute the circuit representing the function, gate-by-gate. Because addition gates
can be computed locally by the parties holding the input shares, only multiplication gates require
interaction between the parties to evaluate. As such, the major bottleneck of MPC protocols is due
to the communication required to evaluate the multiplication gates in a circuit. However, a core
advantage of secret-sharing-based MPC, first identified in the work of Beaver [Bea92], is that secure
multiplications can be preprocessed in an input-independent precomputation phase. In particular,
the parties can securely generate additive shares of many “Beaver triples” (a, b, a · b) ∈ F3. Then,
for each multiplication gate that needs to be computed in the online phase, the parties can run a
fast information-theoretically secure multiplication protocol that consumes one Beaver triple and
involves communicating just two elements of F per party. This model of secure computation with
preprocessing, due to the efficiency of the online phase, forms the basis for modern MPC protocols.
However, this preprocessing paradigm only serves to push the inefficiency bottleneck of MPC to
the offline phase that consists of generating many correlated randomnesses such as Beaver triples.
Furthermore, although offline communication may be inexpensive, storing substantial amounts of
correlated randomness for each potential future interaction can still be costly.

Therefore, a key question for efficient MPC is whether we can generate correlated randomness with
sublinear communication compared to the number of correlations and minimal storage requirements.

Generating Pseudorandom Correlations. Recently, a new paradigm has emerged that enables the

4 Introduction

silent generation of long correlated pseudorandom strings [BCG+18; BCG+19b; BCG+19a], removing
essentially all of the communication in the preprocessing phase. Concretely, this is made possible by
the new cryptographic primitives, such as pseudorandom correlation generators (PCGs) [BCG+19b]
and pseudorandom correlated functions (PCFs) [BCG+20a].

A PCG compresses long correlations into short, correlated seeds that can later be locally expanded
into pseudorandom instances of the target correlation. Slightly more formally, a PCG is a pair
of algorithms (PCG.Gen,PCG.Expand), where PCG.Gen produces two short keys (k0, k1), and
PCG.Expand(σ, kσ) produces a long string yσ such that (y0, y1) form pseudorandom samples from
the target correlation. PCGs enable silent secure computation as follows: using a small distributed
protocol to securely generate the keys (k0, k1), two parties can afterward locally expand them into
long correlated pseudorandom strings without any further communication.

PCGs suffer from a major limitation: after distributing the keys, the parties are bound to generate
all at once a priori fixed amount of correlated randomness. PCFs overcome this issue: a PCF is
a pair of algorithms (PCF.Gen,PCF.Eval) where PCF.Gen produces two short keys (k0, k1), and
PCF.Eval(σ, kσ, x) outputs yxσ where for each new input x, (yx0 , yx1) appears like a fresh sample
from the target correlation. Hence, after distributively generating the keys (k0, k1) once and for
all, two parties can generate any amount of target correlations on the fly in all their future secure
computations.

Useful Correlations for MPC. While generating correlations in preprocessing can boost the
efficiency of the online phase in MPC, it is important to discuss the concrete types of two-party
correlations crucial for MPC protocols. For example, random Oblivious Transfer (OT) correlation,
in which one party is given a pair of random bits (more generally, strings) (s0, s1) and the other
party is given the pair (b, sb) for a random bit b. The OT correlation can serve as a basis for general
MPC protocols with no honest majority [GMW87; Yao86]. Other kinds of two-party correlations
that are useful for arithmetic circuit based-MPC include oblivious linear-function evaluation (OLE)
correlations [ADI+17], and multiplication triples (also known as “Beaver triples") [Bea92; DPS+12].
The line of work on PCGs and PCFs has been fairly successful in generating OT, OLE, or Beaver
triples:

• For OLE correlation over a finite field F, i.e., a two-party correlation (r0, r1) where r0 =
(∆, u)←$ F2 and r1 = (v, w) ∈ F2, v ←$ F andw := ∆u+v. The PCG-based OLE [BCG+22]
has concrete efficiency features. The parties can store two 1.25MB seeds, which they expand as
needed to generate over a million OLEs (32MB total, 26 times the seed size) in Zq , where q is a
128-bit secure product of two 62-bit primes. On a single core of a modern laptop, this process
takes under 10 seconds, achieving a throughput of more than 100 thousand OLEs per second.
To generate authenticated triples from PCG-OLE, the cost of expansion doubles, yielding 50
thousand triples per second and increasing the seed size to 2.6MB.

• Another useful correlation is vector OLE (VOLE), an extension of OLE that can replace OLEwith
multiple vector OLEs in certain applications [ADI+17]. In a VOLE of length n, one party holds
(∆,u) and another holds (v,w) such that ∆ ←$ F, (u,v) ←$ Fn and w := ∆u + v ∈ Fn.
Moreover, random OT can be realized by a VOLE correlation if F = F2, therefore efficient
PCG/PCF-based VOLE leads to that of PCG-based OT. Modern PCG protocols for OT correlation
(often called silent OT extension) can stretch up to 10 million OTs per second on one core of a
standard laptop [CRR21; BCG+22; RRT23] from keys in the 10∼20 KB range, and the fastest
PCFs for OT [BCG+22] can generate up to 100 thousand OTs per second on one core of a
standard laptop.

1.1 Secure Multi-Party Computation (MPC) 5

1.1.2 Practical Secure Computation

The line of work on Pseudorandom Correlation Generators (PCGs) and Pseudorandom Correlation
Functions (PCFs) has significantly advanced the practical application of Multi-Party Computation
(MPC). In this section, we discuss two key aspects:

• The practical applications of PCGs and PCFs in enhancing the efficiency of concrete function-
alities in MPC, such as Private Set Intersection (PSI) and Zero-Knowledge Proofs (ZK).

• The current limitations within the state-of-the-art PCGs and PCFs, along with the open
questions that our work aims to address.

Private Set Intersection (PSI)

PSI is a cryptographic primitive allowing parties to jointly compute the set of all common elements
between their datasets, without leaking any value outside the intersection. It is a special case of
secure multi-party computation. PSI enjoys a wide array of real-life applications; it is perhaps the
most actively researched concrete functionality in secure computation and has been the target of
a tremendous number of works, see [PSZ14; PSS+15; KKR+16; RR17; KRT+19; PSW+18; PRT+19;
PRT+20; CM20; RS21; GPR+21; RT21a] and references therein for a sample. As a consequence
of this intense research effort, recent PSI protocols now achieve impressive efficiency features,
communicating only a few hundred bits per database item, and processing millions of items in
seconds.

Improving PSI with pseudorandom correlation generators. One of important applications of PCGs is that
PCGs allow to construct silent OT extension protocols [BCG+19a], which can realize (pseudorandom)
OT extension with minimal (logarithmic) communication. Since the top-performing PSI protocols
rely on efficient OT extension, using PCG-based techniques to improve their efficiency is a natural
idea. And indeed, this was done recently for OKVS-based PSI in [RS21], leading to the most efficient
PSI protocol known to date (OKVS stands for oblivious key-value store [GPR+21]; the use of OKVS
is the leading paradigm for the design of PSI protocols). To give a single datapoint, computing the
intersection between two databases of size n = 220 with the protocol of [RS21] communicates as little
as 426n bits in total. In addition, some of the tools used in [RS21] have been significantly improved
since: replacing their OKVS (which is the PaXoS OKVS of [PRT+20]) by the more recent 3H-GCT
OKVS of [GPR+21], and replacing their PCG (which is the one from [WYK+21]) by the recent PCG
of [CRR21], the cost goes down to an impressive 247n bits of total communication. In comparison,
even the insecure approach of exchanging the hashes of all items in the databases already requires
160n bits of communication. OKVS-based PSI protocols are now firmly established as the leading
paradigm in the field, and the use of PCGs to reduce their communication overhead even more seems
to further widen the gap with the other paradigms.

Therefore, taking the advantage of PCGs, we aim to explore whether it is possible to design
two-party PSI protocols that achieve either improved performance or enhanced security.

Zero-Knowledge Proofs (ZKPs)

A ZKP is a cryptographic protocol that allows one party who possesses a witness, known as the
prover, to demonstrate to another party, called the verifier, that a particular public statement is true
without revealing any additional information about witness beyond the truth of the statement itself.
This concept is critical in cryptography for securing data and verifying statements without exposing
sensitive information. A ZKP has three properties:

6 Introduction

• Completeness: if the statement is true then the prover can convince the verifier of this fact.

• Soundness: if the statement is false, a cheating prover will fail to convince the verifier.

• Zero-Knowledge: the verifier learns nothing beyond the fact that the statement is true.
In this work, we focus on ZKPs in the designated-verifier setting. We classify two types of

designated-verifier ZKPs: Interactive Zero-Knowledge Proofs and Non-Interactive Zero-Knowledge
Proofs (DV-NIZKs).

Interactive Zero-Knowledge Proof: The prover and verifier engage in an interactive protocol, where
the verifier poses challenges, and the prover responds. This interaction often involves several rounds.
Specifically, in this work, we work on interactive ZKPs for circuit satisfiability where the verification
of a statement is represented as a public circuit C : {0, 1}n → {0, 1}. The commit-and-prove
zero-knowledge (CP-ZK) paradigm is among the most flexible and modular design mechanisms for
constructing ZKP. In commit-and-prove zero-knowledge protocols, the prover begins by committing
to a value related to the secret without revealing it. Later, the prover can “open” this commitment to
reveal specific aspects of the committed information or demonstrate properties of the secret, proving
its validity while still keeping the sensitive information concealed.

Non-Interactive Zero-Knowledge Proofs (NIZKs): The proof can be generated by the prover without
interacting with the verifier. This kind of proof is particularly useful in distributed and decentralized
systems, where interaction isn’t feasible. The main difference between DV-NIZKs and standard
NIZKs lies in the verification process. Standard NIZKs are publicly verifiable, meaning anyone with
the proof can verify it. In contrast, DV-NIZKs restrict verification to a single designated verifier,
preventing the proof from being reused or validated by anyone else. A reusable DV-NIZK is a more
advanced type of designated-verifier NIZK that allows a designated verifier to verify multiple proofs
from the same prover without requiring a new setup for each individual proof.

Sublinear PCG-based Zero-Knowledge Proof for Circuit Satisfiability. By leveraging efficient
on-the-fly generation of PCG-based VOLE, recent VOLE-based zero-knowledge proofs for circuit
satisfiability [BMR+21; WYK+21; YSW+21] have achieved notable efficiency. These ZKPs use inter-
active commitment schemes that independently commit to each wire value in the circuit, followed
by consistency checks with minimal overhead. Although the communication complexity of general
VOLE-based ZKPs scales linearly with the circuit size, they maintain high throughput due to the
underlying lightweight operations.

From SIMD-ZK to general ZK. Define (B, C)-SIMD circuit (Single Instruction Multiple Data) which
contains B identical components of the circuit C. A SIMD-ZK proves that for input witnesses
(w1, . . . ,wB), C(wi) = 0 for i ∈ [B]. By exploiting the fact that operations are identical across B
components, SIMD-ZK schemes typically utilize vector commitments and batch proofs to achieve
communication sublinear inB ·|C|. In more detail, denote by JwK a commitment to a vectorw. Define
a witness matrixW = (w1∥ . . . ∥wB). Instead of viewing the ith column as the witness to the ith
evaluation of C, a prover commits to each row vector and lets the verifier obtain (Jw1K, . . . , Jw|C|K).
In this way, for any gate (α, β, γ, ⋄) in C and ⋄ ∈ {Add,Mult}, the prover only needs to prove that
wγ = wα ⋄wβ . ZKP schemes achieve O(|C|) proof size if both the vector commitment and batch
proof of additions and multiplications incur constant size. Following the line of work of VOLE-based
ZKPs, AntMan [WYY+22] designs a ZKP for (B, C)-SIMD circuits with a complexity of O(B + C)
and they then conduct the transformation from SIMD-ZK to general ZK by using a wire consistency
check on top of SIMD-ZK. In particular, AntMan first arranges all gates in batches, commits to their
input and output wire values, and then utilizes a SIMD-ZK to prove that all batches of gates are

1.1 Secure Multi-Party Computation (MPC) 7

computed correctly. Then an extra protocol is invoked to prove the consistency of each wire value
that is repeatedly packed in multiple commitments, e.g., for batched wire values w1,w2 ∈ FB and
wire indices i, j ∈ [B], it aims to check whether they satisfyw1[i] = w2[j]. AntMan requiresO(B3)
complexity for checking all combinations of (i, j) ∈ [B]× [B], which leads to a total communication
complexity of O(B3 + C/B). This translates to a O(C3/4) cost when setting B = C1/4.

An interesting question is whether we can design a generic a compiler that translates any commit-
and-prove SIMD-ZK (CP-SIMD-ZK) into a general CP-ZK with exactly sublinear communication
complexity.

Designated-Verifier NIZK from Public-Key PCFs. DV-NIZKs are believed to be easier to obtain
than standard NIZKs, in the following sense: they are known to exist under the plain CDH assumption
in pairing-free groups [CH19; QRW19; KNY+19], while NIZKs are only known in pairing groups, or
using subexponential hardness assumptions [JJ21; CJJ+23]. Yet, efficiency-wise, we do not know of
any concretely efficient construction of DV-NIZKs in pairing-free groups (efficient NIZKs are known
in pairing groups [GS08; KW15; CH20], and known DV-NIZKs in pairing-free groups rely on the
hidden bit model, for which no concretely efficient instantiation is known).

The silent generation of correlated randomness from PCGs or PCFs requires two parties to
engage in an interactive protocol to securely generate the PCG/PCF keys. Public-Key PCFs reduce
this interactive phase to a bare minimum, by replacing it with a public-key setup. More precisely,
after publishing their public keys online, any pair of parties on a network can start generating corre-
lated randomness, without any interaction beyond the initial PKI (Public Key Infrastructure). From
PCGs/PCFs for OT, VOLE and OLE correlations, one can obtain NIZKs [BCG+18] or preprocessing
NIZKs, in which the trusted party generates a verification key for the verifier and additionally a
secret proving key for the prover [BCG+19b; BCG+20a]. Therefore, assume there exists an efficient
public-key PCF for OT with a minimal interaction, it is natural to design an efficient DV-NIZK scheme
with stronger security.

MPC For Boolean Circuit in the Preprocessing Model

In contrast to the secure computation of arithmetic circuits over large fields, the fastest way to
run N -party MPC protocols for Boolean circuits remains the “naïve” method of generating many
pairwise OTs, at a cost of Ω(m · N2) bits for m Beaver triples. This is in contrast to the two-
party setting, where two-party Beaver triples can be generated very efficiently thanks to a recent
line of work [BCG+18; BCG+19b; BCG+19a] on silent OT extension. In silent OT extension, two
parties can generate m Beaver triples using only O(logm) communication. The state-of-the-art
protocols in this area [CRR21; BCG+22; RRT23] achieve impressive throughputs of several million
Beaver triples per second on one core of a standard laptop. Furthermore, the recent SoftSpoken
OT extension protocol [Roy22] yields even faster OTs at the cost of increasing communication.
For example, SoftSpoken can generate nearly 30M OT/s on local network at the cost of increasing
the communication to 64m bits to generate m Beaver triples; other communication/computation
tradeoffs are possible [Roy22, Table 1].1

The situation, however, is much less satisfying for the setting of secure computation of Boolean
circuits with a larger number of parties. Protocols such as SPDZ [DPS+12] and Overdrive [KPR18]
do not perform well when generating Beaver triples for Boolean circuits, even in the passive setting.
This is due to the high overhead of embedding F2 in an extension field compatible with the number
theoretic-transform used in efficient instantiations of the BGV encryption scheme [BGV14]. Fur-
thermore, silent OT extension techniques build on Pseudorandom Correlation Generators (PCGs),

1Note that we need two calls to the OT functionality to generate one Beaver triple.

8 Introduction

which typically work only in the two-party setting [BCG+19b]. To handle more parties, one needs
the stronger notion of programmable PCG [BCG+20b], which, informally, allows partially specifying
parts of the generated correlation. Unfortunately, while efficient programmable PCGs over large
fields were introduced in [BCG+20b], building concretely efficient, programmable PCGs over F2

has remained elusive thus far, making N -party PCGs for F2 primarily of theoretical interest. The
state-of-the-art is the recent work of Bombar et al. [BCC+23], which generates Beaver triples over
any field Fq with q ≥ 3. However, Bombar et al. [BCC+23] leave analyzing the concrete efficiency
for future work.

1.2 Our Contribution
Building on the advancements in Pseudorandom Correlation Generators (PCGs) and Pseudorandom
Correlation Functions (PCFs), our contributions fall into three main categories:

• We demonstrate a significant impact of PCGs, such as vector-OLE and OLE, on enhancing the
efficiency of Private Set Intersection (PSI).

• We propose constructions of Designated-Verifier Zero-Knowledge Proof including efficient
PCG-based ZKP for General Circuits with sublinear communication and Reusable DV-NIZK
from Public-Key PCF-based OT.

• We address key open questions regarding PCGs/PCFs, specifically achieving PCGs for OLE
over F4, enabling efficient MPC for Boolean circuits.

These contributions are presented in four publications [BC23; BCC+24; BCM+24; BBC+24], with
the core work highlighted in this thesis as in the following three sections, while other contributions
made during my PhD are presented in chronological order of writing in Section 1.2.4.

1.2.1 Improving PSI for Set with Small Entries [BC23]

We introduce new protocols for private set intersection (PSI), building upon recent constructions of
PCG as vector OLE. Our new constructions improve over the state of the art on several aspects and
perform especially well in the setting where the parties have databases with small entries. The two
main contributions are as follows:

1. We introduce a new semi-honest PSI protocol that combines subfield vector OLE with hash-
based PSI, i.e., it can be instantiated using several hashing techniques. Our protocol is the first
PSI protocol to achieve communication complexity independent of the computational security
parameter κ, and has communication lower than all previous known protocols for input sizes ℓ
below 70 bits.

2. We enhance the security of our protocol to the malicious setting, using two different approaches.
In particular, we show that applying the dual execution technique yields a malicious PSI whose
communication remains independent of κ, and improves over all known PSI protocols for small
values of ℓ.

As most previous protocols, our above protocols are in the random oracle model. We introduce a
third protocol which relies on subfield ring-OLE to achieve maliciously secure PSI in the standard
model, under the ring-LPN assumption. Our protocol enjoys extremely low communication, reason-
able computation, and standard model security. Furthermore, it is batchable: the message of a client

1.2 Our Contribution 9

can be reused to compute the intersection of their set with that of multiple servers, yielding further
reduction in the overall amortized communication.

These results appear in the proceedings of PKC 2023 (co-authored with Geoffroy Couteau).

1.2.2 Efficient Designated-Verifier Zero-Knowledge Proof [BCC+24;
BCM+24]

Sublinear PCG-based ZKP for General Circuits [BCC+24]. We propose a generic compiler
that can convert any zero-knowledge (ZK) proof for SIMD circuits to general circuits efficiently
with an extension that can preserve the space complexity of the proof systems. Our compiler can
immediately produce new results improving upon state-of-the-art. By plugging Antman [WYY+22]
in our compiler, an interactive sublinear-communication VOLE-based ZK protocol, we improve the
overall communication complexity for general circuits from O(C3/4) to O(C1/2). Our implemen-
tation shows that for a circuit of size 227, it achieves up to 83.6× improvement in communication
compared to the state-of-the-art implementation. Its end-to-end running time is at least 70% faster
in a 10Mbps network.

These results appear in the proceedings of the Journal of Cryptology 2024 (co-authored with
Haotian Chu, Geoffroy Couteau, Xiao Wang, Chenkai Weng, Kang Yang and Yu Yu).

Reusable DV-NIZK from Public-Key PCF-based OT [BCM+24]. We show that public-key
PCFs can serve as a building block to construct reusable designated-verifier non-interactive zero-
knowledge proofs (DV-NIZK) for NP in a black-box manner. In particular, assuming there exists
an efficient public-key PCF for OT, one can compile any Σ-protocol with binary challenge into a
DV-NIZK. we obtain a new DV-NIZK from polynomial assumptions over pairing-free groups for all
languages that admit a Σ-protocol with bit challenges, with communication comparable to that of
the Σ-protocol. Conceptually, our result can be seen as observing that a public-key PCF suffices to
upgrade non-reusable DV-NIZKs (which exist from public key encryption [CHH+07]) into reusable
DV-NIZKs.

These results appear in the proceedings of EUROCRYPT 2024 (co-authored with Geoffroy Couteau,
Pierre Meyer, Alain Passelègue and Mahshid Riahinia).

1.2.3 FOLEAGE:F4OLEAGE-basedMPC forBooleanCircuits [BBC+24]

Asmentioned in Section 1.1.2, theMPC of boolean circuits is less satisfying than theMPC of arithmetic
circuit. We introduce F4OLEAGE, which addresses this gap by introducing an efficient preprocessing
protocol tailored to Boolean circuits, with semi-honest security and tolerating N − 1 corruptions.
F4OLEAGE has excellent concrete performance: It generatesm multiplication triples over F2 using
only N ·m+O(N2 · logm) bits of communication for N -parties, and can concretely produce over
12 million triples per second in the 2-party setting on one core of a commodity machine. Our result
builds upon an efficient PCG for multiplication triples over the field F4.

This is achieved by introducing a number of protocol-level, algorithmic-level, and implementation-
level optimizations on the recent PCG construction of Bombar et al. (CRYPTO 2023) from the
Quasi-Abelian Syndrome Decoding assumption.

Specifically, we focus on secure computation of general Boolean circuits with multiple parties
in the semi-honest setting. F4OLEAGE outperforms the state-of-the-art approach in both the two-
party and multi-party setting. In particular, F4OLEAGE enjoys much lower communication in the
preprocessing phase than all known alternatives and has a very low computational overhead. We

10 Introduction

expect F4OLEAGE to be the fastest alternative for large enough circuits on almost any realistic
network setting, for any number of parties between two and several hundred.

These results appear in the proceedings of ASIACRYPT 2024 (co-authored with Maxime Bombar,
Geoffroy Couteau, Alain Couvreur, Clément Ducros and Sacha Servan-Schreiber).

1.2.4 Other Contributions

Improved All-but-One Vector Commitment with Applications to Post-Quantum
Signatures [BCS24]

Post-quantum digital signature schemes have recently received increased attention due to the NIST
standardization project for additional signatures. MPC-in-the-Head and VOLE-in-the-Head are
general techniques for constructing such signatures from zero-knowledge proof systems. A common
theme between the two is an all-but-one vector commitment scheme which internally uses GGM
trees. This primitive is responsible for a significant part of the computational time during signing
and verification.

A more efficient technique for constructing GGM trees is the half-tree technique, introduced by
Guo et al. (EUROCRYPT 2023). Our work builds an all-but-one vector commitment scheme from the
half-tree technique, and further generalizes it to an all-but-τ vector commitment scheme. Crucially,
our work avoids the use of the random oracle assumption in an important step, which means our
binding proof is non-trivial and instead relies on the random permutation oracle. Since this oracle
can be instantiated using fixed-key AES which has hardware support, we achieve faster signing and
verification times. We integrate our vector commitment scheme into FAEST (faest.info), a round one
candidate in the NIST standardization process, and demonstrates its performance with a prototype
implementation. For λ = 128, our experimental results show a nearly 3.5-fold improvement in
signing and verification times.

These results are detailed in a manuscript that has not yet been published (co-authored with
Kelong Cong and Cyprien Delpech de Saint Guilhem).

Faster Signatures from MPC-in-the-Head [BCC+25]

We revisit the construction of signature schemes using the MPC-in-the-Head paradigm and obtain
two main contributions:

1. We observe that previous signatures in the MPC-in-the-Head paradigm must rely on a salted
version of the GGM puncturable pseudorandom function (PPRF) to avoid collision attacks. We
design a new efficient PPRF construction that is provably secure in the multi-instance setting.
The security analysis of our PPRF, in the ideal cipher model, is quite involved and forms a core
technical contribution to our work. While previous constructions had to rely on a hash function,
our construction uses only a fixed-key block cipher and is considerably more efficient as a result:
we observe a 12× to 55× speed improvement for a recent signature scheme (Joux and Huth,
CRYPTO’24). Our improved PPRF can be used to speed up many MPC-in-the-head signatures.

2. We introduce a new signature scheme from the regular syndrome decoding assumption, based on
a new protocol for the MPC-in-the-head paradigm, which significantly reduces communication
compared to previous works. Our scheme is conceptually simple, though its security analysis
requires a delicate and nontrivial combinatorial analysis.

These results appear in the proceedings of ASIACRYPT 2024 (co-authored with Eliana Carozza,
Geoffroy Couteau, Dahmun Goudarzi and Antoine Joux).

faest.info

1.2 Our Contribution 11

Efficient Multi-instance Vector Commitment and Application to Post-quantum
Signatures [Bui25]

The MPC-in-the-Head (MPCitH) and the VOLE-in-the-Head (VOLEitH) paradigms have recently
been utilized to develop post-quantum signatures. Both rely on a mechanism that allows the signer to
commit to N values and then later open all-but-one. In particular, MPCitH-based signatures achieve
this using a puncturable pseudorandom function (PPRF) primitive, while VOLEitH-based signatures
utilize an all-but-one vector commitment scheme.

A novel and efficient multi-instance PPRF, introduced by Bui et al. (ASIACRYPT’24), provides
a significant performance boost for MPCitH-based signatures, employing only a fixed-key block
cipher to instantiate the PPRF while being provably secure in the ideal cipher model. This work
presents an efficient multi-instance vector commitment derived from multi-instance PPRF. Our
vector commitment scheme is secure in the multi-instance setting, when handling repetitive parallel
executions. As a result, it can be directly applied to enhance the efficiency of VOLEitH-based
signatures.

We implemented our vector commitment scheme into FAEST (faest.info), a round one candidate
in the NIST post-quantum cryptography standardization. According to our experimental imple-
mentation, we achieve 10%− 27% improvement in both signing and verification times for various
settings.

These results appear in the proceedings of ACISP 2025.

Structured-Seed Local Pseudorandom Generators and their Applications [BCM24]

In this work, we revisit the applications of local PRGs. Our main observation is that many of the
standard applications of local PRGs do not require the full power of local PRGs. In particular, many
applications only require the existence of a local pseudorandom mapping from n-bit seeds tom-bit
strings, but do not require the seeds to be sampled uniformly at random. We formalize this observation
by introducing the notion of structured-seed local pseudorandom generators, which generalize local
PRGs to the setting where the seed should be sampled from a prescribed distribution with support
over {0, 1}n (instead of being sampled uniformly at random), and provide a sample of applications
where structured-seed local PRGs can be used as a drop-in replacement to standard local PRGs.
Concretely, we show how to use structured-seed local PRGs in the following applications:

• Indistinguishability obfuscation from well-founded assumptions [JLS21].

• Constant-overhead secure computation [IKO+08].

• Compact homomorphic secret sharing [BCM23].

• Hardness of learning DNFs [DV21].
These results are detailed in a manuscript that has not yet been published (co-authored with

Geoffroy Couteau and Nikolas Melissaris).

Critical Round in Multi-Round Proofs: Compositions and Transformation to Trap-
door Commitments[ABB+24]

In many multi-round public-coin interactive proof systems, challenges in different rounds serve
different roles, but a formulation that actively utilizes this aspect has not been studied extensively. In
this paper, we propose new notions called critical-round special honest verifier zero-knowledge and
critical-round special soundness. Our notions are simple, intuitive, easy to apply, and capture several

faest.info

12 Introduction

practical multi-round proof protocols including, but not limited to, those from the MPC-in-the-Head
paradigm.

We demonstrate the usefulness of these notions with two fundamental applications where three-
round protocols are known to be useful, but multi-round ones generally fail. First, we show that
critical-round proofs yield trapdoor commitment schemes. This result also enables the instantiation
of post-quantum secure adaptor signatures and threshold ring signatures from MPCitH, resolving
open questions in (Haque and Scafuro, PKC 2020) and in (Liu et al., ASIACRYPT 2024). Second, we
show that critical-round proofs can be securely composed using the Cramer-Schoenmakers-Damgård
method. This solves an open question posed by Abe et al. in CRYPTO 2024.

Overall, these results shed new light on the potential of multi-round proofs in both theoretical
and practical cryptographic protocol design.

These results are detailed in a manuscript that has not yet been published (co-authored with
Masayuki Abe, David Balbás, Miyako Ohkubo, Zehua Shang and Mehdi Tibouchi).

Personal Publications
[ABB+24] Masayuki Abe, David Balbás, Dung Bui, Miyako Ohkubo, Zehua Shang, and Mehdi

Tibouchi. Critical Round in Multi-Round Proofs: Compositions and Transformation to
Trapdoor Commitments. ePrint Archive. Available at https://eprint.iacr.org/2024/252.
2024.

[BBC+24] Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, Clément Ducros, and
Sacha Servan-Schreiber. “FOLEAGE:F4OLE-BasedMulti-party Computation for Boolean
Circuits”. In: Advances in Cryptology – ASIACRYPT 2024. Ed. by Kai-Min Chung and
Yu Sasaki. Singapore: Springer Nature Singapore, 2024, pp. 69–101. isbn: 978-981-96-
0938-3.

[Bui25] Dung Bui. “Efficient Multi-instance Vector Commitment and Application to Post-
quantum Signatures”. In: Information Security and Privacy – ACISP 2025. Springer
Nature Singapore, 2025. url: https://eprint.iacr.org/2024/254.

[BCC+25] Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux.
“Faster Signatures from MPC-in-the-Head”. In: Advances in Cryptology – ASIACRYPT
2024. Ed. by Kai-Min Chung and Yu Sasaki. Singapore: Springer Nature Singapore, 2025,
pp. 396–428. isbn: 978-981-96-0875-1.

[BCC+24] Dung Bui, Haotian Chu, Geoffroy Couteau, Xiao Wang, Chenkai Weng, Kang Yang, and
Yu Yu. “An Efficient ZK Compiler from SIMD Circuits to General Circuits”. In: Journal
of Cryptology 38.1 (Dec. 2024), p. 10. issn: 1432-1378. doi: 10.1007/s00145-024-09531-4.
url: https://doi.org/10.1007/s00145-024-09531-4.

[BCS24] Dung Bui, Kelong Cong, and Cyprien Delpech de Saint Guilhem. Improved All-but-
One Vector Commitment with Applications to Post-Quantum Signatures. ePrint Archive.
Available at https://eprint.iacr.org/2024/255. 2024.

[BC23] Dung Bui and Geoffroy Couteau. “Improved Private Set Intersection for Sets with Small
Entries”. In: PKC 2023, Part II. Ed. by Alexandra Boldyreva and Vladimir Kolesnikov.
Vol. 13941. LNCS. Springer, Heidelberg, May 2023, pp. 190–220. doi: 10.1007/978-3-031-
31371-4_7.

https://eprint.iacr.org/2024/252
https://eprint.iacr.org/2024/254
https://doi.org/10.1007/s00145-024-09531-4
https://doi.org/10.1007/s00145-024-09531-4
https://eprint.iacr.org/2024/255
https://doi.org/10.1007/978-3-031-31371-4_7
https://doi.org/10.1007/978-3-031-31371-4_7

1.3 Organization of this Thesis 13

[BCM24] Dung Bui, Geoffroy Couteau, and Nikolas Melissaris. Structured-Seed Local Pseudoran-
dom Generators and their Applications. ePrint Archive. Available at https://eprint.iacr.
org/2024/253. 2024.

[BCM+24] Dung Bui, Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia.
“Fast Public-Key Silent OT and More from Constrained Naor-Reingold”. In: Advances
in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024,
Proceedings, Part VI. Ed. by Marc Joye and Gregor Leander. Vol. 14656. Lecture Notes in
Computer Science. Springer, 2024, pp. 88–118. doi: 10.1007/978-3-031-58751-1_4.

1.3 Organization of this Thesis
The thesis is organized as follows:

• In Chapter 1, we introduce the concepts of MPC and correlated randomness, along with their
applications. We then provide an overview of our contributions, which include the four main
contributions detailed throughout the thesis, as well as additional work completed by the
author during her PhD.

• In Chapter 2, we present the necessary preliminaries for understanding the content of this
thesis.

• In Chapter 3, we describe our first contribution, which involves Private Set Intersection (PSI)-
based PCG.

• In Chapter 4, we present two additional contributions related to Zero-Knowledge Proofs (ZKPs):
sublinear privately verifiable ZKPs based on PCG Section 4.1 and a new DV-NIZK construction
based on PCF Section 4.2.

• In Chapter 5, we introduce our final contribution on MPC for Boolean circuits, where we
propose a framework to efficiently construct PCG over small fields.

• In Chapter 6, we conclude the thesis and discuss some open questions for future research.

For each chapter presenting a contribution, we begin with the motivation and related work,
followed by any additional notations or preliminary concepts needed for that chapter. If no specific
preliminaries are required, all necessary background material can be found in Chapter 2. We then
present a detailed description of our contribution, along with a technical overview. Finally, the
remaining sections provide supplementary information to fully understand the contribution.

https://eprint.iacr.org/2024/253
https://eprint.iacr.org/2024/253
https://doi.org/10.1007/978-3-031-58751-1_4

Chapter 2
Preliminaries

In this chapter, we establish the foundational concepts and terminology used throughout this
manuscript. We begin by introducing the notations and cryptographic definitions that are used in our
work. Next, we formalize the computational hardness assumptions critical to our contributions. We
then define key primitives related to correlated randomness, including (constrained) pseudorandom
function (PRF), pseudorandom correlation generators (PCGs), pseudorandom correlation functions
(PCFs), and function secret sharing (FSS). Additionally, we provide definitions for designated-verifier
zero-knowledge proofs, both interactive and non-interactive. Finally, we then describe several
essential ideal functionalities that are realized by our constructions.

Contents
2.1 Notations . 16
2.2 Cryptographic Definitions . 17

2.2.1 Universal Composability (UC) . 17
2.2.2 Commitment Schemes . 18
2.2.3 Information-Theoretic Message Authentication Codes (ITMACs) 18

2.3 Computational Hardness Assumptions . 19
2.3.1 Discrete-Logarithm-Based Assumptions 19
2.3.2 Decisional Composite Residuosity Assumption 20
2.3.3 Learning Parity with Noise (LPN) . 20
2.3.4 Ring Learning Parity with Noise (Ring-LPN) 21
2.3.5 Quasi-Abelian Syndrome Decoding Problem (QA-SD) 22

2.4 (Constrained) Pseudorandom Function (PRF) 23
2.4.1 Pseudorandom Functions . 23
2.4.2 Constrained Pseudorandom Functions . 24

2.5 Function Secret Sharing (FSS) . 25
2.6 Pseudorandom Correlation Generators (PCGs) 26

2.6.1 Defining Pseudorandom Correlation Generators 26
2.6.2 Vector Oblivious Linear Evaluation (Vector OLE) 27
2.6.3 Oblivious Linear Evaluation (OLE) . 28

2.7 Pseudorandom Correlation Functions (PCFs) 29
2.7.1 Weak Pseudorandom Correlation Functions (wPCFs) 30

16 Preliminaries

2.7.2 Strong Pseudorandom Correlation Functions 31
2.8 Designated-Verifier Zero-Knowledge Proofs 32

2.8.1 Privately Verifiable ZKPs . 33
2.8.2 Non-Interactive Zero-Knowledge Proofs (NIZKs) 33

2.9 Ideal Functionalities . 36
2.9.1 Ideal Functionality of PSI . 36
2.9.2 Ideal Functionalities for Interactive ZKPs 36

2.1 Notations
Throughout the manuscript we use the following notations. The concrete notations used in each
chapter are listed inside each chapter.

Set, Integers. We let λ, κ denote the computational and statistical security parameters, respectively.
We write [1,m] to denote a set {1, 2, . . . ,m}, for simplicity, we sometimes use [m]. We use N,Z
for notations of natural, integer numbers. For the domain of bit string of length ℓ, we denote it as
{0, 1}ℓ.

Negligible Function. A function f(λ) is negligible if for every polynomial poly(λ), there exists a
λ0 such that for all λ > λ0, f(λ) < 1

poly(λ) , meaning it decreases faster than any inverse polynomial
in λ.

Vector, Matrix. We use bold lowercase for vector and bold uppercase for matrix. For a vector x we
define by xi its i-th coordinate. For two vector u = (u1, . . . , ut),v = (v1, . . . , vt) ∈ Rt for some
ring R, their tensor product u⊗ v is defined by u⊗ v = (ui · vj)i,j≤t = (v1 · u, . . . , vt · u) and we
denote by ⟨u,v⟩ their inner product. Similarly, we write u⊞ v to denote the outer sum of a vector,
equal to u⊞ v = (ui + vj)i,j≤t = (v1 + u, . . . , vt + u). We let u[i] denote the value of index i in u.

Polynomial-Time Algorithm. By an efficient algorithm A or PPT A we mean that Adv is modeled
by a (possibly non-uniform) Turing Machine that runs in probabilistic polynomial time. An expected
PPT algorithm is a probabilistic algorithm whose expected running time, averaged over its internal
randomness, is bounded by a polynomial in the size of its input.

Assignation. For a finite set S, we write x←$ S to denote that x is sampled uniformly at random
from S. For an algorithm A, we denote by y ← A(x) the output y after running A on input x.

Probabilities. We denote Pr[X = x] as the probability of a random variable X taking value x,
and Prx∈D[f(x) = y] to denote the probability that f(x) is equal to some fixed value y, when x is
sampled from the distribution D.

Distribution. Two distributionsD0 andD1 (or two families of distributions {Dλ
0}λ∈N and {Dλ

1}λ∈N)
are said to be computationally indistinguishable with respect to a security parameter λ if, for all prob-
abilistic polynomial-time (PPT) algorithmsA (called distinguishers), the difference in the probabilities
of A outputting 1 on inputs sampled from Dλ

0 and Dλ
1 is negligible in λ.

Formally, two distributions Dλ
0 and Dλ

1 are computationally indistinguishable if:

∀PPT A,
∣∣∣Pr[A(x) = 1 | x ∼ Dλ

0]− Pr[A(x) = 1 | x ∼ Dλ
1]
∣∣∣ ≤ negl(λ),

We write D0 ≈ D1 to mean that two distributions D0 and D1 are computationally indistinguishable
to all efficient distinguishers A.

2.2 Cryptographic Definitions 17

Statistical indistinguishability is a stronger notion than computational indistinguishability. The
indistinguishability here is based on their statistical (or total variation) distance.
Formally, two distributions Dλ

0 and Dλ
1 are statistically indistinguishable if their statistical distance

is negligible in the security parameter λ. Formally:

∆(Dλ
0 , D

λ
1) =

1

2

∑
x

∣∣∣Pr[x ∈ Dλ
0]− Pr[x ∈ Dλ

1]
∣∣∣ ≤ negl(λ),

where ∆(Dλ
0 , D

λ
1) is the statistical (or total variation) distance. We denote D0 ≈s D1 to mean that

D0 and D1 are statistically indistinguishable.

2.2 Cryptographic Definitions

2.2.1 Universal Composability (UC)

The Universal Composability (UC) paradigm [Can01] is a formal framework for defining and analyzing
the security of cryptographic protocols in a way that ensures they remain secure even when composed
with other protocols. In UC security, the security of a protocol π is defined by distinguishing between
its real-world execution and an ideal-world execution of a functionality F . The protocol is secure if,
for every real-world adversary A, there exists an ideal-world simulator S such that the outputs in
both worlds are computationally indistinguishable from an environment Z .

Consider a protocol π having n parties (P1, . . . , Pn) designed to realize an ideal functionality F .
The security definition requires that for every real-world adversary A, there exists an ideal-world
simulator S such that:

1. Real World Execution: parties P1, . . . , Pn execute protocol π under the corrupted adversary
A. This execution results in an output distribution, denoted by Realπ,A,Z(1

λ) , where λ is the
security parameter, and Z is the environment that provides inputs and observes outputs of the
protocol execution.

2. Ideal World Execution: the same set of parties interact with an ideal functionality F and a
simulator S that emulates the adversary’s behavior. This produces an output distribution
IdealF ,S,Z(1

λ).

Definition 2.2.1 (UC Security). The protocol π securely realizes F if for every adversary A, there
exists a simulator S such that:

Realπ,A,Z(1
λ) ≈ IdealF ,S,Z(1

λ)

where "≈" denotes computational indistinguishability. In other words, no environment Z can distinguish
between interactions with the real protocol π and the ideal functionality F , formally:∣∣∣Pr [Realπ,A,Z(1

λ) = 1
]
− Pr

[
IdealF ,S,Z(1

λ) = 1
]∣∣∣ ≤ negl(λ)

The simulation-based security is a specific case of UC security, the UC paradigm builds on simulation-
based security, but it strengthens the model by requiring security under composition.

18 Preliminaries

2.2.2 Commitment Schemes

A commitment scheme is a cryptographic protocol between a prover and a verifier, where the prover
can securely commit to a message by sending a commitment. Later, the prover can reveal the original
message by “opening” the commitment. This commitment has two key properties: hiding and binding.
The hiding property ensures that the verifier learns nothing about the message from the commitment
alone. The binding property guarantees that the prover cannot open a commitment to two different
messages. A commitment scheme consists of three probabilistic PPT algorithms (Gen,Com,Open)
for a message spaceM:

• pp← Gen(1λ). On input a security parameter λ, the algorithm outputs public parameters pp.

• c← Com(pp,m, r). On input the public parameters pp, a message m ∈M , and randomness
r from a randomness space, the algorithm outputs a commitment c.

• {0, 1} ← Open(pp, c,m, r). On input the public parameters pp, a commitment c, the original
message m, and randomness r, the algorithm verifies whether c was correctly formed. It
outputs 1 (accept) if valid or 0 (reject) otherwise.

A commitment scheme must satisfy the following properties:

• Hiding: A commitment c does not reveal any information about the committed message
m ∈M.

∀m1,m2 ∈M, Com(pp,m1, r1) ≈ Com(pp,m2, r2),

where r1, r2 are chosen uniformly at random, and≈ denotes computational indistinguishability.
In perfectly hiding schemes, the distributions are statistically indistinguishable.

• Binding: Once a commitment c is made, it is infeasible for the sender to open c to two different
messages m1,m2 ∈M, m1 ̸= m2.

Pr [Com(pp,m1, r1) = Com(pp,m2, r2) form1 ̸= m2] ≤ negl(λ),

where the probability is over the randomness r1, r2.

One of thewell-known instantiation of commitments is the Pedersen commitment scheme [Ped92].
Pedersen commitment is perfectly hiding, and computationally binding assuming the hardness of
DLog (Section 2.3.1) over Zp. We formalize the scheme as below.

Pedersen Commitment Scheme. Given a cyclic group G of prime order q with generator g. The
Pedersen commitment scheme works over the group G with the message space and the randomness
space Zq as follows:

• Pedersen.Setup(1λ). sample additional generator ofG such that h = ga for some unknown a ∈
Zq (ensuring g and h are independent under the Dlog assumption). Output pp = (G, q, g, h).

• Pedersen.Com(pp,m, r ∈ Zq). Output com = gm · hr , and aux = (m, r).

• Pedersen.Open(pp, com, aux). Output 1 if com = gm · hr .

2.2.3 Information-TheoreticMessageAuthenticationCodes (ITMACs)

An ITMAC is a cryptographic primitive that provides unconditional security, ensuring that an
adversary cannot forge a valid tag for a message with non-negligible probability, even with unlimited

2.3 Computational Hardness Assumptions 19

computational resources. An ITMAC consists of three probabilistic PPT algorithms (Gen,Tag,Verify)
over the message domainM:

• k ← Gen(1λ). Generates a secret key k of length λ, where λ is the security parameter.

• t← Tag(k,m). Computes a tag t for a messagem ∈M using the key k.

• {0, 1} ← Verify(k,m, t). Verifies if t is a valid tag for the message m ∈ M under the key k.
Returns 1 (accept) if valid and 0 (reject) otherwise.

An ITMAC must satisfy the following properties:
• Correctness: For all keys k generated by Gen and all messagesm:

Verify(k,m,Tag(k,m)) = 1.

• Unforgeability: Even with unlimited computational resources, an adversary cannot produce
a valid tag t for a new message m∗ /∈Mquery, whereMquery is the set of messages for which
the adversary has queried Tag(k, ·).

Pr
[
Verify(k,m∗, t∗) = 1 ∧m∗ /∈Mquery

]
≤ ϵ,

where ϵ is a negligible probability determined by the key and message lengths.

2.3 Computational Hardness Assumptions

2.3.1 Discrete-Logarithm-Based Assumptions

LetDLog.Sample(1λ) be a polynomial-time algorithm that on input the security parameter λ, outputs
(Gλ, g, q) such that Gλ is a cyclic group of prime order q, and g is a generator of Gλ.

Assumption 2.3.1 (Discrete-Logarithm-Based Assumptions). Let λ be the security parameter and
(Gλ, g, p)←$ DLog.Sample.

• The DLog assumption is considered computationally hard in a cyclic group Gλ of prime order
q. For any probabilistic polynomial-time (PPT) algorithm A, the probability of A(g, y) = x is
negligible:

Pr[A(g, y) = x | y = gx, x ∈ Zq] ≤ negl(λ),

• The Computational Diffie-Hellman (CDH) assumption is a variant of the DLog problem, such
that for any PPT algorithm A, the probability of A(g, ga, gb) = gab is negligible:

Pr[A(g, ga, gb) = gab] ≤ negl(λ),

• The Decisional Diffie-Hellman (DDH) assumption strengthens the CDH problem by requiring
the indistinguishability of gab from a random group element. For any PPT algorithm A, the
advantage in distinguishing gab from a random element is negligible:∣∣∣Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, T) = 1]

∣∣∣ ≤ negl(λ),

where T is sampled uniformly at random from Gλ.

20 Preliminaries

Assumption 2.3.2 (Power-DDH, [CNs07]).
The power-DDH assumption states that for a group Gλ = ⟨g⟩ of prime order p generated from
DLog.Sample(1λ), for any polynomially-bounded ℓ ∈ N, it holds that:(

g, gr, gr
2
, . . . , gr

ℓ−1
, gr

ℓ
)
≈
(
g, gr, gr

2
, . . . , gr

ℓ−1
, gt
)
,

where r, t←$ Z∗
p.

Assumption 2.3.3 (Sparse Power-DDH). The sparse power-DDH assumption states that for a group
Gλ = ⟨g⟩ of prime order p generated from DLog.Sample(1λ), for any polynomially-bounded ℓ ∈ N
and S ⊂ [ℓ], it holds that:(

g, (gr
i
)i∈S , (g

ri)i∈[ℓ]\S

)
≈
(
g, (gr

i
)i∈S , (g

ti)i∈[ℓ]\S

)
,

where r ←$ Z∗
p, and ti ←$ Z∗

p for all i ∈ [ℓ] \ S.

2.3.2 Decisional Composite Residuosity Assumption

Let SampleModulus be a polynomial-time algorithm that on input the security parameter λ, outputs
(N,P,Q), where N = PQ for λ-bit primes P and Q.

Assumption 2.3.4 (Decisional Composite Residuosity assumption, [Pai99]). Let λ be the security
parameter. We say that the Decision Composite Residuosity (DCR) problem is hard relative to
SampleModulus if (N, x) ≈ (N, xN) where (N,P,Q)←$ SampleModulus(1λ), x←$ Z∗

N2 , and xN

is computed modulo N2.

Note that Z∗
N2 can be written as a product of subgroups H× NRN , where H = {(1 +N)i : i ∈

[N]} is of order N , and NRN = {xN : x ∈ Z∗
N2} is the subgroup of N -th residues that has order

ϕ(N).

Paillier-ElGamal Cryptosystem. The Paillier-ElGamal cryptosystem [CS02; BCP03] is defined
by a triple (PaillierEG.Gen, PaillierEG.Enc,PaillierEG.Dec), and boils down to using the ElGamal
cryptosystem over the group (Z⋆

N2 ,×) where N is a Blum integer of the form N = PQ, where P
and Q are primes:

• PaillierEG.Gen(1λ). Sample g′ ←$ [N2], d ←$ [N2], set g ← (g′)2N mod N2, and output
(pk = gd mod N2, sk = d).

• PaillierEG.Enc(pk, x). Sample r ←$ [N], and output ct = (gr, pkr · (1 +N)x).

• PaillierEG.Dec(sk, ct = (ct0, ct1)). Set ct′ ← ct1 · (ct0)−d mod N2, and output x = ct′−1
N .

Assuming theDCR assumption (Assumption 2.3.4), the Paillier-ElGamal cryptosystem is semantically
secure.

2.3.3 Learning Parity with Noise (LPN)

We define the LPN assumption over a ringR with dimension k, number of samples n, w.r.t. a code
generation algorithm C, and a noise distribution D:

2.3 Computational Hardness Assumptions 21

Definition 2.3.1 (Dual LPN). Let D(R) = {Dk,n(R)}k,n∈N denote a family of efficiently sampleable
distributions over a ringR, such that for any k, n ∈ N, Im(Dk,n(R)) ⊆ Rn. Let C be a probabilistic
code generation algorithm such thatC(k, n,R) outputs a matrixH ∈ Rk×n. For dimension k = k(λ),
number of samples (or block length) n = n(λ), and ringR = R(λ), the (dual) (D,C,R) - LPN(k, n)
assumption states that

{(H,b)s.t. H ←$ C(k, n,R), e←$ Dk,n(R),b← H · s}
≈ {(H,b)s.t. H ←$ C(k, n,R),b←$Rn}.

The dual LPN assumption is also called syndrome decoding assumption in the code-based cryp-
tography literature. The dual LPN assumption as written above is equivalent to the primal LPN
assumption with respect toG (a matrixG ∈ Rn×n−k such thatH ·G = 0), which states thatG ·s+e
is indistinguishable from random, where s ←$ Rn−k and e ←$ Dk,n(R); the equivalence follows
from the fact that H (̇G · s+ e) = H · e.

The standard LPN assumption refers to the case where H is a uniformly random matrix over F2,
and e is sampled from Berr(F2), where r is called the noise rate. Other common noise distributions
include exact noise (the noise vector e is a uniformly random weight-rn vector from Fn

2 ; this is
a common choice in concrete LPN-based constructions) and regular noise (the noise vector e is a
concatenation of rn random unit vectors from F1/r

2 , widely used in the PCG literature [BCG+18;
BCG+19b; BCG+19a]).

Known constructions of subfield-VOLE use various flavors of the dual LPN assumption with
regular noise over a finite field. For example, the work of [BCG+18] suggests relying on an LDPC
code, while [BCG+19a] uses quasi-cyclic codes, and [CRR21] uses a new family of codes, called Silver
codes.

2.3.4 Ring Learning Parity with Noise (Ring-LPN)

We now define the Ring-LPN assumption, a variant of the dual LPN assumption over polynomial
rings, first introduced in [HKL+12] The assumption has been used in multiple works since. Ring-LPN
is the natural “ring analog” of LPN, in the same way that ring-LWE is the ring analog of LWE.

Definition 2.3.2 (Ring-LPN). Let R = F[X]/(F (X)) for some field F and degree-N polynomial
F (X) ∈ Z[X], and let m, t ∈ N. Let HWt be the distribution over Rp that is obtained via sampling
t noise positions A ← [0..N)t as well as t payloads b ← Zt

p uniformly at random, and outputting
e(X) :=

∑t−1
j=0 b[j] ·XA[j]. The R-LPNp,q,t problem is hard if for any PPT adversary A, it holds that

|Pr[A((ai, ai · s+ ei)
m
i=1) = 1]− Pr[A((ai, ui)mi=1) = 1]| ≤ negl(λ)

where the probabilities are taken over the random choices of the values a1, . . . , am, u1, . . . , um ← Rp,
s, e1, . . . , em ← HWt and the randomness of A.

We note that, for our contribution about OLE-based PSI, we build upon the PCG-based OLE
of [BCG+20b]. The latter uses a relatively new flavor of the ring-LPN assumption, over a polynomial
ring where the polynomial splits completely; however, in this work, we do not need this new flavor,
and instead rely solely on the (relatively well-established) standard ring-LPN assumption over a
polynomial ring with an irreducible polynomial.

22 Preliminaries

2.3.5 Quasi-Abelian Syndrome Decoding Problem (QA-SD)

The Quasi-Abelian Syndrome Decoding assumption (QA-SD) was introduced in [BCC+23]. It can be
viewed as a generalization of the ring-LPN assumption over suitable multivriate polynomial rings.
Following [BCC+23], we formalize it as a syndrome decoding assumption for quasi-abelian codes,
which provides a convenient framework to study it and analyze its hardness guarantees. Let G be
a finite Abelian group. The group algebra of G with coefficients in the finite field Fq is the set of
formal linear combinations

{∑
g∈G agg | ag ∈ Fq

}
, which is an Fq-vector space of dimension |G|,

endowed with the convolution product:∑
g∈G

agg

∑
g∈G

bgg

 :=
∑
g∈G

(∑
h∈G

ahbhg−1

)
g.

It can be seen that this product is commutative. TheHamming weightwH(a) of an element a ∈ Fq[G]
is the number of its non zero coordinates in the basis (g)g∈G. This is a well-defined notion since it
does not depend on the ordering of the elements of G.

Recall that a finite Abelian group is nothing more than a direct product of cyclic groups:

G ≃ Z/d1Z× · · · × Z/drZ,

where the di’s can be equal. Then, the group algebra Fq[G] admits an explicit description as some
particular multivariate polynomial ring:

Fq[G] ≃ Fq[X1, . . . , Xr]/(X
d1
1 − 1, . . . , Xdr

r − 1),

where the isomorphism is given by (k1, . . . , kr) 7→ Xk1
1 · · ·Xkr

r , and extended by linearity. We are
now ready to define the main hard problem, which can be stated as a search and a decisional variant.

Definition 2.3.3 ((Search) QA-SD(q, c, t,G)). Let G be a finite Abelian group, Fq[G] its algebra with
coefficients in the finite field Fq, and let c ≥ 2 be some constant integer called the compression factor.
Given a target Hamming weight t ∈ {1, . . . , |G|} and a probability distribution Φt which outputs
elements x ∈ Fq[G] such that E(wH(x)) = t. Given access to a pair of the form (a, ⟨a, e⟩+ e0) where
a is uniformly distributed over Fq[G]c−1 and e′ := (e0, e) ∈ Fq[G]c is formed by independent elements
distributed according to Φt, the goal is to recover the error term e′.

Definition 2.3.4 ((Decisional) QA-SD(q, c, t,G)). Let G be a finite Abelian group, Fq[G] its algebra
with coefficients in the finite field Fq, and let c ≥ 2 be some constant integer called the compression
factor. Given a target Hamming weight t ∈ {1, . . . , |G|} and a probability distribution Φt which
outputs elements x ∈ Fq[G] such that E(wH(x)) = t, the Quasi-Abelian Syndrome Decoding problem
asks to distinguish, with a non-negligible advantage, between the distributions:

D0 :
(
(a(i))i∈{1,...,c−1}, u

)
where a(i), u←$ Fq[G]

D1 :

(
(a(i))i∈{1,...,c−1},

c−1∑
i=1

a(i)ei + e0

)
where a(i) ←$ Fq[G] and ei ←$ Φt.

We say that the QA-SD(q, c, t,G) assumption holds when this problem is hard for every non-uniform
polynomial time distinguisher.

2.4 (Constrained) Pseudorandom Function (PRF) 23

Remark 2.3.1. When it is clear from the context, we might drop the dependency in q and simply write
QA-SD(c, t,G).

In general we consider Φt to output uniform elements of Hamming weight t, or a regular variant
where the basis (g)g∈G is split into t blocks of size |G|/t (except maybe the last one) such that each
block contains exactly one t.

Relation to linear codes. Fix an ordering of the elements of G and for every element a ∈ Fq[G],
denote byMa the |G|×|G|matrix representing the multiplication by a. A code having a parity-check
matrix formed by multiple blocks of the form Ma is known as a Quasi-Abelian code of group G (or a
quasi-G code). Formally, it is an Fq[G]-submodule of the free module Fq[G]ℓ for some integer ℓ > 0.
WhenG = {1}, then Fq[G] is nothing but the finite field Fq, and therefore a quasi-{1} code is simply
an Fq-linear code. On the other hand, when G = Z/nZ is cyclic, then Fq[G] ≃ Fq[X]/(Xn − 1).
Therefore, quasi-Z/nZ codes are exactly quasi-cyclic codes, we refer to [BCC+23, Section 4] for more
information on Quasi-Abelian codes.

Now, a sample (a, ⟨a, e⟩⟩+ e0) corresponds to a pair (H,He′) where

H =
[
I|G| Ma1 · · · Mac−1

]
is by definition, a parity-check matrix of some random quasi-Abelian code of rate 1 − 1/c, in
systematic form, and e′ = (e0, e) is an error vector of length c|G| and weight ct, with a c-split
structure (which is standard when dealing with structured variants of the decoding problem).

2.4 (Constrained) Pseudorandom Function (PRF)

2.4.1 Pseudorandom Functions

Definition 2.4.1 ((Weak) Pseudorandom Function (wPRF, PRF), [GGM84; NR95]). Let λ ∈ N be
a security parameter. A (weak) pseudorandom function with domain X = {Xλ}λ∈N, key space
K = {Kλ}λ∈N, and range Y = {Yλ}λ∈N, consists of the following two polynomial-time algorithms:
• KeyGen(1λ) → (msk): A probabilistic algorithm that on input the security parameter λ,
outputs a master secret key msk ∈ K.

• Eval(msk, x)→ y: A deterministic algorithm that on input the master secret key msk, and an
input value x ∈ X , outputs a value y ∈ Y .

We say that the pair (KeyGen,Eval) is a

- pseudorandom function (PRF) if for any PPT adversary A, it holds that∣∣∣Pr [AEval(msk,·)(1λ) = 1
∣∣msk←$ KeyGen(1λ)

]
− Pr

[
ARF (·)(1λ) = 1

∣∣∣RF
$← F

]∣∣∣ = negl(λ),

where F is the set of all functions with domain X and range Y .

- weak pseudorandom function (wPRF) if for any PPT adversary A and any polynomially
bounded number Q ∈ N, it holds that{(

(xi,Eval(msk, xi))i∈[Q]

)∣∣∣∣∣ msk
$← KeyGen(1λ)

∀i ∈ [Q] : xi
$← X

}
≈c

{(
(xi, yi)i∈[Q]

)∣∣∣∣∣ ∀i ∈ [Q] :

xi
$← X , yi $← Y

}
.

24 Preliminaries

2.4.2 Constrained Pseudorandom Functions

Definition 2.4.2 (Constrained Pseudorandom Functions). Let λ be a security parameter. A Con-
strained Pseudorandom Function (CPRF) with domain X = {Xλ}λ∈N, key space K = {Kλ}λ∈N, and
range Y = {Yλ}λ∈N, that supports a class of circuits C = {Cλ}λ∈N, where each Cλ ∈ Cλ has domain
Xλ and range {0, 1}, consists of the following four polynomial-time algorithms:

• KeyGen(1λ)→ (pp,msk): The master key generation algorithm is a probabilistic algorithm
that on input the security parameter λ, outputs a public parameter pp and a master secret key
msk ∈ K.

• Eval(pp,msk, x)→ y: The evaluation algorithm is a deterministic algorithm that on input the
public parameter pp, the master secret key msk, and an input x ∈ X , outputs a value y ∈ Y .

• Constrain(msk, C)→ ckC : The constrained key generation algorithm is a probabilistic algo-
rithm that on input the master secret key msk, and a circuit C ∈ C, outputs a constrained key
ckC .

• CEval(pp, ckC , x) → y: The constrained evaluation algorithm is a deterministic algorithm
that on input the public parameter pp, a constrained key ckC , and an input x ∈ X , outputs a
value y ∈ Y .

Correctness. For any security parameter λ, any constrain C ∈ C, and any input x ∈ X such that
C(x) = 0, we have:

Pr

Eval(pp,msk, x) ̸= CEval(pp, ckC , x) :

pp← Setup(1λ)

msk← KeyGen(pp)

ckC ← Constrain(msk, C)

 ≤ negl(λ).

1-Key Selective Security. We say that a CPRF is 1-key selectively secure if the advantage of any
PPT adversary A in the following game is negligible:

- Setup: The challenger runs (pp,msk)← KeyGen(1λ), initializes a set Seval = ∅, and chooses
a random bit b←$ {0, 1}. It then sends pp to A.

- Selective Choice of Constraint: The adversary chooses a (single) circuit C ∈ C and sends it
to the challenger.

- Constrained Key Generation: The challenger computes ckC ← Constrain(msk, C) and
returns the constrained key ckC to A.

- Pre-Challenge Evaluation Queries: A can adaptively send arbitrary input values x ∈ X
to the challenger. The challenger computes y ← Eval(pp,msk, x) and returns y to A. It also
updates Seval ← Seval ∪ {x}.

- Challenge Phase: A sends an input x∗ ∈ X as its challenge query to the challenger with the
restriction that x∗ /∈ Seval and C(x∗) ̸= 0. If it holds that b = 0, then the challenger computes
y∗ ← Eval(pp,msk, x∗). Otherwise, if b = 1, the challenger samples a random value y∗ $← Y .
Finally, the challenger returns y∗ to A.

- Post-Challenge Evaluation Queries: A continues the queries as before, with the restriction
that it cannot query x∗ as an evaluation query.

2.5 Function Secret Sharing (FSS) 25

- Guess: A outputs a bit b′ ∈ {0, 1}.

1-Key Selective Constraint-Hiding. We say that a CPRF is selectively 1-key constraint-hiding if
the advantage of any PPT adversary A in the following game is negligible:

- Setup: The challenger runs (pp,msk)← KeyGen(1λ), and chooses a random bit b $← {0, 1}.
It then sends pp to A.

- Selective Choice of Constraint: The adversary chooses a (single) pair of circuits (C0, C1) ∈ C
and sends the pair to the challenger.

- Constrained Key Generation: The challenger computes ckb ← Constrain(msk, Cb), and
returns ckb to A.

- Evaluation Queries: A can query the output of the evaluation algorithm on arbitrary inputs
x ∈ X , with the restriction that C0(x) = C1(x). On such inputs, the challenger computes and
returns y ← Eval(pp,msk, x) to A.

- Guess: A outputs a bit b′ ∈ {0, 1}.
In both of the games described above, A wins if b′ = b. We also define the advantage of A in

winning a game as |2 · Pr[A wins]− 1|, where the probability is over the internal coins ofA and the
challenger.

No-Evaluation Security. 1-key selective no-evaluation security (resp. 1-key selective no-evaluation
constraint-hiding) is defined similarly with the extra restriction that the adversary cannot issue any
pre-challenge or post-challenge query (resp. any evaluation query).

2.5 Function Secret Sharing (FSS)
Function secret sharing (FSS), introduced in [BGI15; BGI16], allows a dealer to succinctly secret share
a function with two parties. An FSS scheme splits a secret function f : X → G, where G is some
Abelian group into keys K0,K1 that can be used by party σ ∈ {0, 1} to evaluate the function on an
input x ∈ X and obtain the share [[f(x)]]σ of the result. We focus on FSS for point functions which
are known as Distributed Point Functions (DPFs).

Distributed Point Functions. Let X be an input domain and G be an Abelian group. A point
function Pα,β : X → G is a function that evaluates to message β ∈ G on a single input α ∈ X , and
evaluates to 0 ∈ G on all other inputs x ̸= α ∈ X . A distributed point function (Definition 2.5.1)
is a point function that is encoded into a pair of keys. Each key can be used to obtain an additive
secret-share of the point function Pα(x), for any input x ∈ X .

Definition 2.5.1 (Distributed Point Function (DPF) [GI14; BGI16]). Let λ be the security parameter,
X be an input domain, and G be an Abelian group. A DPF scheme (with a full-domain evaluation
procedure) consists of a tuple of efficient algorithms DPF = (Gen,FullEval) with the following syntax.

• DPF.Gen(1λ, 1n, α, β)→ (K0,K1). Takes as input a security parameter, a domain size n, and
index α ∈ X and a payload β ∈ G. Outputs two evaluation keysK0 andK1.

• DPF.FullEval(σ,Kσ)→ vσ . Takes as input the party index σ and an evaluation keyKσ . Outputs
a vector vσ .

These algorithms must satisfy correctness, security, and efficiency:

26 Preliminaries

Correctness. A DPF is said to be correct if for all α ∈ X , all β ∈ G, and all pairs of keys generated
according to DPF.Gen(1λ, 1n, α, β), the sum of the individual outputs from DPF.FullEval result in the
one-hot basis vector scaled by the message β,

Pr
[

FullEval(0,K0) + FullEval(1,K1) = β · eα
]
= 1,

where eα ∈ G|X | is the α-th basis vector.

Security. A DPF is said to be secure if each individual evaluation key output by DPF.Gen leaks nothing
about (α, β) to a computationally bounded adversary. Formally, there exists an efficient simulator S such
that {Kσ} ≈ S(1λ, 1n, σ), where ≈ denotes the computational indistinguishability of distributions.

Efficiency. A DPF is said to be efficient if the size of each key is sublinear in the domain size. That is,
for all σ ∈ {0, 1}, |Kσ| = |X |ϵ for some ϵ < 1.

FSS for the sum of point functions. We let SPFSS be an FSS scheme for the class of sums of point
functions: Functions of the form f(x) =

∑
i fsi,yi(x), where each fsi,yi(·) evaluates to yi on si, and

to 0 everywhere else. As in previous works, we will use efficient constructions of SPFSS in our
constructions of PCGs.

2.6 Pseudorandom Correlation Generators (PCGs)
Pseudorandom Correlation Generators (PCGs) were introduced in a line of work [BCG+18; BCG+19b;
BCG+19a]. They allow two parties to generate a target correlation by locally stretching seeds
that are significantly smaller than the number of correlations. Slightly more formally, a PCG for
a target correlation C (which samples pairs of long correlated strings (y0, y1)) consists of two
algorithms (Gen,Expand) such that Gen(1λ) outputs a pair of short, correlated seeds (seed0, seed1)
and Expand(σ, seedσ) outputs a long string ỹσ .

• Correctness: (ỹ0, ỹ1) are indistinguishable from a random sample from C ,

• Security: given (seed1−σ, ỹσ) looks like a random sample from C conditioned on satisfying
the target correlation with Expand(1− σ, seed1−σ), for σ = {0, 1}.

2.6.1 Defining Pseudorandom Correlation Generators

At a high level, a pseudorandom correlation generator (PCG) is a paradigm that takes as input a pair
of short, correlated seeds and produces long correlated pseudorandom strings through a deterministic
and locally executable expansion process.

Correctness. The output of the PCG should be computationally indistinguishable from truly random
correlated strings.

Security. The security of PCGs a security model based on indistinguishability. Specifically, an
adversary with access to one seed kσ should not be able to distinguish the pseudorandom string
R1−σ from a random string chosen subject to the correlation (R0, R1), where Rσ = PCG(kσ). In
essence, the adversary’s knowledge of one seed should not reveal more about the other party’s
pseudorandom string than what is already evident from their own string.

The formal definition of PCGs and the related definitions such as correlation generators are taken
almost verbatim from [BCG+18; BCG+19b] as below.

2.6 Pseudorandom Correlation Generators (PCGs) 27

Correlation Generators. The concept of a correlation generator can be considered as a PPT
algorithm outputting correlated elements.

Definition 2.6.1 (Correlation Generator). A PPT algorithm C is called a correlation generator, if C
on input 1λ outputs a pair of elements in {0, 1}n × {0, 1}n for n ∈ poly(λ).

Definition 2.6.2 (Reverse-sampleable Correlation Generator). Let C be a correlation generator. We
say C is reverse sampleable if there exists a PPT algorithm RSample such that for σ ∈ {0, 1} the
correlation obtained via:

{(R′
0, R

′
1) | (R0, R1)← C(1λ), R′

σ := Rσ, R
′
1−σ ← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

Definition 2.6.3 (Pseudorandom Correlation Generator (PCG)). Let C be a reverse-sampleable
correlation generator. A pseudorandom correlation generator (PCG) for C is a pair of algorithms
(PCG.Gen,PCG.Expand) with the following syntax:

• PCG.Gen(1λ): A PPT algorithm that, given a security parameter λ, outputs a pair of seeds
(k0, k1).

• PCG.Expand(σ, kσ): A polynomial-time algorithm that, given party index σ ∈ {0, 1} and a seed
kσ , outputs a bit string Rσ ∈ {0, 1}n.

• Correctness. The correlation obtained via:

{(R0, R1) | (k0, k1)← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).

• Security. For any σ ∈ {0, 1}, the following two distributions are computationally indistinguish-
able:

{(k1−σ, Rσ) | (k0, k1)← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ)}

and{
(k1−σ, Rσ),

(k0, k1)← PCG.Gen(1λ),

R1−σ ← PCG.Expand(1− σ, k1−σ), Rσ ← RSample(σ,R1−σ)

}

where RSample is the reverse sampling algorithm for correlation C .

For a PCG construction to be non-trivial, it is required that the seeds are significantly shorter
than the output size. Our work considers two primary types of PCGs, vector OLEs and OLEs. Vector
OLEs have a significantly lower setup cost compared to OLEs, making it ideal for applications where
high efficiency is crucial. On the other hand, OLEs are suited for constructing more advanced
cryptographic primitives that require higher security guarantees or more concrete properties.

2.6.2 Vector Oblivious Linear Evaluation (Vector OLE)

The vector OLE correlation [BCG+19b; BCG+19a] over a field F is the following correlation:

{((u,v), (∆,w))| u,v←$ Fn; ∆←$ F;w← ∆ · u+ v}

28 Preliminaries

Figure 2.1: Fn,F
VOLE in the malicious setting

PARAMETERS: Two parties, a sender and a receiver, an integer n, the size of the output vector, a finite
field F.
FUNCTIONALITY:
• Initialize: Upon receiving (init, InputS) and (init, InputR) from sender and receiver, sample∆←$ F
if receiver is honest or receive∆ ∈ F from the adversary otherwise. It stores global key∆ and sends
∆ to receiver, and ignores all subsequent init commands.

• Extend: This procedure can be run multiple times. Upon receiving (extend, n) from sender and
receiver, do:

1. If receiver is corrupted then wait for A to send w ∈ Fn; samples u ←$ Fn and computes
v := w −∆ · u.

2. If sender is corrupted then wait for A to send vectors u ∈ Fn,v ∈ Fn and computes
w := ∆ · u+ v.

3. Otherwise, samples u←$ Fn,v←$ Fn and computes w := ∆ · u+ v.

• Return: Functionality sends (OutputS,u, v) to sender and (OutputR,∆,w) to receiver.

We represent on Figure 2.1 the ideal functionalityFn,F
VOLE of vector-OLE inmalicious setting. We define

subfield vector OLE correlation as u is defined over a subfield of F. In our concrete instantiations, we
instantiate this functionality using the general template in [BCG+19b; BCG+19a; WYK+21], which
can be instantiated under various flavors of the learning parity with noise assumption (LPN) and
Puncturable Pseudorandom Function (PPRF). Using the protocol of [BCG+19a] to distribute the
seeds1, the theoretical communication cost to have Fn,F

VOLE is (log(cn/t)|OT|+ 10|F|) · t, where t is
Hamming weight of noises for the underlying LPN assumption, |OT| = O(κ) is the size of chosen
OT [LWY+22] and c is the ratio between number of samples and the length of VOLE.

2.6.3 Oblivious Linear Evaluation (OLE)

We start with the ring OLE correlation [BCG+20b], a ring-OLE correlation over a ring Q is the
following correlation:

{((x0, z0), (x1, z1))| x0, x1, z0 ←$Q, z1 ← x0 · x1 − z0}

We define a subfield ring OLE as a ring OLE where x0 belongs to a subring of Q. Its functionality
and random OLE functionality are shown in Figure 2.2. A Ring-OLE is typically constructed from a
Distributed Point Function (DPF) (see Section 2.5 for details) under the ring-learning parity with
noise (ring-LPN)assumption [BCG+20b]. The communication for setting up the seed of ring-OLE is
(ct)2 · (34 log n+10 log |F|+(2λ+3) log(2n)+ 4λ)+ ct · (log n+ log |F|) where c is compression
factor, t is number of noise such that ring-learning parity with noise (ring-LPN) assumption holds
with these parameters [BCG+20b]. Random OLE can be silently generated from ring-OLE with an
appropriate choice of polynomial ring Q as shown in [BCG+20b].

1This protocol uses a length-t reverse VOLE protocol as a black box, which we instantiate with the construction
of [ADI+17].

2.7 Pseudorandom Correlation Functions (PCFs) 29

Figure 2.2: Fn,Q
rOLE,F

F
OLE in the malicious setting

PARAMETERS: There are two parties, a sender and a receiver, a finite polynomial ring Q =
F[x]/(F (x)), a length n (for Fn,Q

rOLE), and a finite field F (for FF
OLE).

FUNCTIONALITY Fn,Q
rOLE:

• Upon receiving (init, InputS) and (init, InputR) from sender and receiver:

1. If receiver is corrupted then wait for A to send (x1, z1) ∈ Q; samples x0 ←$ Q and
computes z0 := x0 · x1 − z1.

2. If sender is corrupted then wait for A to send (x0, z0) ∈ Q; samples x1 ←$ Q and
computes z1 := x0 · x1 − z0.

3. Otherwise, Sample uniformly random x0 ←$Q, x1, z1 ←$Q, let z0 = x0 · x1 − z1 ∈ Q.

• Functionality sends Output (OutputS, x0, z0), (OutputR, x1, z1) to the sender and the receiver
respectively.

FUNCTIONALITY FF
OLE: It is the same as in one of Fn,Q

rOLE when replacing n = 1,Q = F.

2.7 Pseudorandom Correlation Functions (PCFs)

At a high level, a pseudorandom correlation function (PCF) compresses, in short correlated keys,
(superpolynomially large) correlated pseudorandom strings for some ideal correlation, e.g., strings of
Beaver triples [Bea92]2. Specifically, from correlated keys, parties can locally compute an unlimited
number of correlations while maintaining the security.

We consider two different flavors of PCFs: weak PCFs (wPCF) and strong PCFs (sPCF). Analogously
to PRFs, wPCFs guarantee security given access only to evaluations on uniformly random and
independent inputs, while sPCFs guarantee security even for adaptively chosen inputs. Note that
contrary to PRFs, the PCF literature treats weak PCFs as the default notion.

Reverse-Sampleable Correlations

We recall the definition of reverse-sampleable correlations from Definition 2.6.2, adjusting the
notations to align with those used in our later definition of PCFs.

Definition 2.7.1 (Reverse-Sampleable Correlation). Let 1 ≤ ℓ0(λ), ℓ1(λ) ≤ poly(λ). Let Y be a
probabilistic algorithm that, on input 1λ, returns a pair of outputs (y0, y1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ),
defining a correlation on the outputs.

We say that Y defines a reverse-sampleable correlation if there exists a probabilistic polynomial time
algorithm RSample which takes as input 1λ, σ ∈ {0, 1}, and yσ ∈ {0, 1}ℓσ(λ), and outputs yℓ1−σ(λ)

1−λ ,
such that for all σ ∈ {0, 1} the following distributions are statistically close:

{(y0, y1) : (y0, y1)←$ Y(1λ)},
and {(y0, y1) : (y′0, y′1)←$ Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)} .

Definition 2.7.2 (OT Correlation). A (1-out-of-2, bit) OT correlation can be defined as being sampled
as a pair ((r0, r1), (b, rb)), where r0, r1, b←$ {0, 1}.

2Recall that a Beaver triple is a triplet additive shares ([a], [b], [c]) where a, b←$R for some ringR, and c = ab.

30 Preliminaries

Remark 2.7.1 (An OT Correlation is Reverse-Sampleable). A (1-out-of-2, bit) OT correlation is
reverse-sampleable. Indeed, observe that the reverse-sampling can be performed as follows.

RSample(1σ, σ, yσ) :

• If σ = 0, parse yσ as yσ = (r0, r1), sample b←$ {0, 1}, and output (b, rb);

• Otherwise (i.e., if σ = 1) parse yσ as yσ = (b, r), sample r′ ←$ {0, 1}, and output ((1− b) · r +
b · r′, b · r + (1− b) · r′).

2.7.1 Weak Pseudorandom Correlation Functions (wPCFs)

We start by defining the notion of a weak pseudorandom correlation function.

Definition 2.7.3 ((Weak) Pseudorandom Correlation Function (wPCF), [BCG+20a, Definition 4.3]).
Let Y be a reverse-sampleable correlation with output length functions ℓ0(λ), ℓ1(λ) and let λ ≤ n(λ) ≤
poly(λ) be an input length function. Let (wPCF.Gen,wPCF.Eval) be a pair of algorithms with the
following syntax:

• wPCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair of
keys (k0, k1); we assume that λ can be inferred from the keys.

• wPCF.Eval(σ, kσ, x) is a deterministic polynomial time algorithm that on input σ ∈ {0, 1}, key
kσ and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}ℓσ(λ).

We say that (wPCF.Gen,wPCF.Eval) is a pseudorandom correlation function (PCF) for Y , if the
following conditions hold:

• (Weakly) pseudorandom Y-correlated outputs. For every non-uniform adversary A of
size B(λ), it holds that for all sufficiently large λ,

|Pr[Expw-prA,N,0(λ) = 1]− Pr[Expw-prA,N,1(λ) = 1]| ≤ negl(λ)

where Expw-prA,N,b (b ∈ {0, 1}) is defined as in Figure 2.3. In particular, the adversary is given
access to N(λ) samples.

Figure 2.3: (Weakly) Pseudorandom Y-correlated outputs of a (w)PCF

ExpprA,N,0(λ) :

(k0, k1)← PCF.Gen(1λ)

For i = 1, . . . , N(λ) :

x(i) ←$ {0, 1}n(λ)

(y
(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

ExpprA,N,1(λ) :

(k0, k1)← PCF.Gen(1λ)

For i = 1, . . . , N(λ) :

x(i) ←$ {0, 1}n(λ)

For σ ∈ {0, 1}:

y
(i)
σ ←$ wPCF.Eval(σ, kσ, x

(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

2.7 Pseudorandom Correlation Functions (PCFs) 31

Figure 2.4: Security of a wPCF

Expw-secA,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)

For i = 1, . . . , N(λ) :

x(i) ←$ {0, 1}n(λ)

y
(i)
σ ←$ wPCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y

(i)
σ)

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

Output b

Expw-secA,N,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)

For i = 1, . . . , N(λ) :

x(i) ←$ {0, 1}n(λ)

y
(i)
1−σ ←$ wPCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

Output b

• Security. For every σ ∈ {0, 1} and every non-uniform adversary A of size B(λ), it holds that
for all sufficiently large λ,

|Pr[Expw-secA,N,σ,0(λ) = 1]− Pr[Expw-secA,N,σ,1(λ) = 1]| ≤ negl(λ)

where Expw-secA,N,σ,b (b ∈ {0, 1}) is defined as in Figure 2.4 where RSample is the algorithm for
reverse sampling Y as in Definition 2.7.1. In particular, the adversary is given access to N(λ)
samples (or simply N if there is no ambiguity).

2.7.2 Strong Pseudorandom Correlation Functions

A strong PCF is syntactically defined in the same way as a weak PCF, but it instead satisfies stronger
notions of pseudorandom Y-correlated outputs and PCF security. For simplicity, we only provide these
modified properties.

We say that (sPCF.Gen, sPCF.Eval) is an (N,B, ϵ)-secure strong pseudorandom correlation
function (sPCF) for Y , if the following conditions hold:

• Strongly pseudorandom Y-correlated outputs. For every non-uniform adversaryA of size
B(λ) asking at most N(λ) queries to the oracle Ob(·) (as defined in Figure 2.5), it holds that
for all sufficiently large λ,

|Pr[Exps-prA,0(λ) = 1]− Pr[Exps-prA,1(λ) = 1]| ≤ ϵ(λ)

where Exps-prA,b (b ∈ {0, 1}) is defined as in Figure 2.5.

32 Preliminaries

Figure 2.5: Strongly Pseudorandom Y-correlated outputs of a sPCF

Exps-prA,b(λ) :

(k0, k1)← PCF.Gen(1λ), Q ← ∅

b←$ AOb(·)(1λ)

Output b
O0(x) :

If (x, y0, y1) ∈ Q,

Else (y0, y1)←$ Y(1λ),
Q ← Q∪ {(x, y0, y1)}
Output (y0, y1)

O1(x) :

For σ ∈ {0, 1}:

yσ ← sPCF.Eval(1λ, σ, kσ, x)

Output (y0, y1)

• Strong Security. For every σ ∈ {0, 1} and every non-uniform adversary A of size B(λ)
asking at most N(λ) queries to the oracle Ob(·) (as defined in Figure 2.6) and RSample is the
algorithm for reverse sampling Y as in Definition 2.7.1, it holds that for all sufficiently large λ,

|Pr[Exps-secA,0,σ(λ) = 1]− Pr[Exps-secA,1,σ(λ) = 1]| ≤ ϵ(λ)

where Exps-secA,σ is defined as in Figure 2.6.

Figure 2.6: Strong PCF Security

Exps-secA,b,σ(λ) :

(k0, k1)← PCF.Gen(1λ), Q ← ∅

b←$ AOb(·)(1λ, σ, kσ)

Output b
O0(x) :

y1−σ ← sPCF.Eval(1− σ, k1−σ, x)

Output y1−σ

O1(x) :

yσ ← sPCF.Eval(σ, kσ, x)

y1−σ ← RSample(1λ, σ, yσ)

Return y1−σ

2.8 Designated-Verifier Zero-Knowledge Proofs
Let R be an efficiently decidable binary relation for an NP language L. If x ∈ L and (x,w) ∈ R
then x is a statement and w is a witness. An interactive/non-interactive argument forR is a tuple of
three probabilistic polynomial time interactive/non-interactive algorithms Π = (Gen,P,V) called
the common reference string generator, the prover, and the verifier. with the following properties:

• (crs, T)← Gen(1λ). On input 1λ generates public parameters par (such as group parameters),
a crs, and a trapdoor T . For simplicity of notation, we assume that any group parameters are

2.8 Designated-Verifier Zero-Knowledge Proofs 33

implicitly included in the crs.
If the trapdoor T of the non-interactive proof system is set to ⊥ (or, alternatively, if it is included in
the crs), we call the argument system publicly verifiable. Otherwise, we call it a designated-verifier
interactive/non-interactive argument system, i.e., Privately Verifiable ZKP for interactive proof and
DV-NIZK for non-interactive one.

2.8.1 Privately Verifiable ZKPs

A privately verifiable interactive argument forR is a tuple of three probabilistic polynomial time
interactive algorithms Π = (Gen,P,V) called the common reference string generator, the prover
and the verifier (Gen is defined as above) with the following properties:

• We write tr ← ⟨P(x),V(y)⟩ for the public transcript produced by P and V when interacting
on inputs x and y. This transcript ends with V either accepting or rejecting. We sometimes
shorten the notation by saying ⟨P(x),V(y)⟩ = b, where b = 0 corresponds to V rejecting and
b = 1 corresponds to V accepting.

Definition 2.8.1 (Perfect completeness). A proof system Π = (Gen,P,V) forR is perfectly complete,
if

Pr

[
⟨P(crs, x, w),V(crs, T , x)⟩ = 1

(crs, T)← Gen(1λ)

(x,w) ∈ R

]
= 1

Definition 2.8.2 (Computational soundness). A proof system Π is computationally sound if for every
efficient adversary A

Pr

[
⟨A,V(crs, T , x)⟩ = 1

x /∈ L

(crs, T)← Gen(1λ)

x← A(1λ, crs)

]
= negl(λ)

An argument Π = (Gen,P,V) is public coin if the verifier’s messages are chosen uniformly
at random independently of the messages sent by the prover, i.e, the challenges correspond to the
verifier’s randomness ρ.

Definition 2.8.3 (Special honest-verifier zero-knowledge (SHVZK)). A public coin argument Π is
an SHVZK if there exists a probabilistic polynomial time simulator Sim such that for all non-uniform
polynomial time adversaries A we have

Pr

[
A(tr) = 1

(x,w) ∈ R
(crs, T)← Gen(1λ)

(x,w, ρ)← A(crs); tr ← ⟨P(crs, x, w),V(crs, T , x)⟩

]

≈Pr

[
A(tr) = 1

(x,w) ∈ R
(crs, T)← Gen(1λ)

(x,w, ρ)← A(crs); tr ← Sim(crs, T , x, ρ)

]

where ρ is the public coin randomness used by the verifier.

2.8.2 Non-Interactive Zero-Knowledge Proofs (NIZKs)

A non-interactive argument for R is a tuple of three probabilistic polynomial time interactive
algorithms Π = (Setup,P,V) (Setup is defined as above) called the common reference string
generator, the prover, and the verifier with the following properties:

34 Preliminaries

• P(crs, x, w). On input of a crs, a statement x with witness w, outputs a proof π for x ∈ L.

• V(crs, x, π, T). On input of a crs, a statement, a proof, and a trapdoor, accepts or rejects the
proof.

which satisfies the completeness, soundness, and zero-knowledge properties defined below.

If the trapdoor T of the non-interactive proof system is set to ⊥ (or, alternatively, if it is included
in the crs), we call the argument system publicly verifiable. Otherwise, we call it a designated-verifier
non-interactive argument system. If the soundness guarantee holds with respect to a computationally
unbounded adversary, we have a NIZK-proof system.

Definition 2.8.4 (Perfect completeness). A proof system Π = (Gen,P,V) forR is perfectly complete,
if

Pr

[
V(crs, x, π, T) = 1

(crs, T)← Setup(1λ)

(x,w) ∈ R , π
$← P(crs, x, w)

]
= 1

The soundness notion can be divided into non-adaptive and adaptive; it is non-adaptive if the
malicious prover needs to choose the statement x before generating the crs while it is adaptive if the
adversary can dynamically choose the statement after generating crs. We consider a strong variant
of adaptive soundness, denoted unbounded adaptive soundness, where the adversary is given oracle
access to a verification oracle. Note that in the publicly-verifiable setting, this is equivalent to the
standard soundness notion (computational soundness), where the adversary must forge valid proof
on an incorrect statement without the help of any oracle. However, in the designated-verifier setting,
the standard soundness notion only guarantees that the argument system remains sound as long as
the prover receives at most logarithmically responses on previous proofs. On the other hand, if the
argument system satisfies unbounded soundness (reusable soundness), its soundness is maintained
even if the adversary receives an arbitrary (polynomial) number of responses on previous proofs.

Definition 2.8.5 (Unbounded adaptive soundness). A proof systemΠ is unbounded adaptive soundness
if for every PPT adversary A

Pr

[
V(crs, x, π, T) = 1

x /∈ L

(crs, T)← Setup(1λ)

(x, π)← AO(crs,.,.,T)(crs)

]
= negl(λ)

whereA can make polynomially many queries to an oracleO(crs, ., ., T)which, on input (x, π), outputs
V(crs, x, π, T).

Knowledge extractability (soundness) is a strengthening of the soundness property which guar-
antees that if the prover produces an accepting proof then there exists an efficient simulator can
actually extract a witness for the statement. So the extractor is defined by Ext(π, x, T)→ w where
(x,w) ∈ R.

Definition 2.8.6 (Unbounded adaptive knowledge soundness). A proof system Π is unbounded
adaptive knowledge extractability if for every PPT adversary A, there exists an efficient extractor Ext
such that

Pr

(crs, T)← Setup(1λ)

(x, π)← AO(crs,.,.,T)(crs)

w ← Ext(π, x, T)
: (x,w) ∈ R iff V(crs, x, π, T) = 1

 ≈ 1

2.8 Designated-Verifier Zero-Knowledge Proofs 35

whereA can make polynomially many queries to an oracleO(crs, ., ., T)which, on input (x, π), outputs
V(crs, x, π, T).

We consider the notion of adaptive zero-knowledge where the adversary can choose the statement
after seeing the crs. The definition of ZK below is often referred to as “single-theorem ZK” in which
the prover generates a single proof (and the length of the common reference string can be larger than
the length of the statement to prove) and multi-theorem zero-knowledge (where the adversary can
adaptively ask for polynomially many proofs on arbitrary pairs (x,w) for the same common reference
string). Note that, there is a generic compiler from single-theorem ZK to multi-theorem ZK where
zero-knowledge holds polynomially many statements via the “OR trick”. The same transformation
directly applies to both the selective and adaptive ZK setting and also both the publicly verifiable
and the designated verifier setting.

Definition 2.8.7 (Adaptive Zero-Knowledge). We say a non-interactive argumentΠ is Adaptive Single-
Theorem (Multi-Theorem) Zero-Knowledge if there exists a polynomial time simulator SimProver =
(S1, S2) where (crs, T) ← S1(1

λ) outputs a simulated common reference string and a simulation
trapdoor and π ← S2(crs, T , x) produces a simulated argument such that

Adaptive Single-Theorem Zero-Knowledge. For all interactive adversaries PPT A, we require

Pr

 A(π) = 1

(x,w) ∈ R

(crs, T)← Setup(1λ)

(x,w)← A(1λ, crs)
π

$← P(crs, x, w)

− Pr

 A(π) = 1

(x,w) ∈ R

(crs, T)← S1(1
λ)

(x,w)← A(1λ, crs)
π ← S2(crs, T , x)

 = negl(λ)

Adaptive Multi-Theorem Zero-Knowledge. A PPT A has a negligible advantage in distinguish-
ing the experiments Expzk,0A (1λ) and Expzk,1A (1λ) given in Figure 2.8.

Figure 2.7: Expzk,0A (1λ) and Expzk,1A (1λ)

Expzk,0A (1λ) :

(crs, T)← Setup(1λ)

Return b← AOprove(crs,.,.)(crs)

Oprove(crs, x, w)

If (x,w) ∈ R then
Return π ← P(crs, x, w)

elseReturn ⊥

end if

Expzk,1A (1λ) :

(crs, T)← S1(1
λ)

Return b← AOsim(crs,T ,.,.)(crs)

Osim(crs, T , x, w)
If (x,w) ∈ R then

Return π ← S2(crs, T , x)

elseReturn ⊥

end if

Figure 2.8: Distinghuish games between outputs of oracles Oprove(crs, x, w) and Osim(crs, T , x, w),
for the (adaptive) multi-theorem zero-knowledge property of a non-interactive argument system. A
outputs b ∈ {0, 1}.

36 Preliminaries

2.9 Ideal Functionalities

2.9.1 Ideal Functionality of PSI

The ideal functionality of PSI in the semi-honest and malicious settings are shown on Figure 2.9. In
the semi-honest setting, the size of a corrupted party’s input set is fixed to n, while in the malicious
setting, the functionality allows a malicious party to use a possibly larger set of bounded size n′ > n.
Since PSI is a special case of secure computation, the security analysis of a two-party PSI protocol is
performed via the standard simulation paradigm.

Figure 2.9: Fpsi in the malicious setting

PARAMETERS:
• An arbitrary field F, n, nX , nY public parameters for honest parties and corrupt parties respec-
tively where n ≤ nX , nY .

• There are two parties, a sender with a input set X ⊆ F and a receiver with a input set Y ⊆ F.
FUNCTIONALITY:

• Wait for sender to send the input set (InputS, X), if |X| > nX and the sender is malicious or if
|X| ≠ n and the sender is honest then abort.

• Wait for receiver to send the input set (InputR, Y). If |Y | > nY and the receiver is malicious or
|Y | ≠ n and the receiver is honest, abort.

• The functionality outputs the intersection (OutputR, X ∩ Y) to receiver.

2.9.2 Ideal Functionalities for Interactive ZKPs

To establish the security of interactive zero-knowledge (ZK) proofs within the Universal Compos-
ability (UC) framework, we define the zero-knowledge functionality FZK in Figure 2.10 and the
commitment functionality FCom in Figure 2.11.

Figure 2.10: FZK Ideal Functionality for Interactive Zero-Knowledge Proofs

PARAMETERS:
• Let C be a publicly known circuit representing a statement to be proven. The protocol involves
a prover P, who possesses a witness w, and a verifier V.

FUNCTIONALITY:
• Upon receiving (prove,w) from P and (verify) from V:

– If C(w) = 0, output (true) to V.
– Otherwise, output (false) to V.

2.9 Ideal Functionalities 37

Figure 2.11: FCom Ideal Functionality for Commitment

PARAMETERS:
• Let C be a publicly known circuit. The protocol involves a prover P, who holds a witness w,
and a verifier V.

FUNCTIONALITY:
• Upon receiving (Commit,w) from P and (Commit) from V:

– Generate a unique tag JwK and store the tuple (JwK,w).
– Return JwK to both parties.

• Upon receiving (Open, JwK):

– If a tuple (JwK,w) was previously stored, output (JwK,w) to V.
– Otherwise, abort.

Chapter 3
Private Set Intersection

In this chapter, we present our first contribution about constructing private set intersection (PSI)
schemes based on pseudorandom correlation generators (PCGs). We describe several constructions:

• Semi-Honest Hash-Based PSI Protocols. New protocols using various hashing techniques
achieve very low communication, especially for small database entries.

• Maliciously Secure Hash-Based PSI Protocols. A revival of the dual execution technique,
previously considered outdated, leads to protocols with lower communication than existing
alternatives for small database entries.

• Maliciously Secure Polynomial-Based PSI Protocol. Introduces a protocol with competitive
communication, security under the standard model (ring-LPN assumption), and efficient client-
server interactions, allowing the client to reuse a single encoding for intersections with multiple
servers.

We provide a detailed technical overview of our contributions in Section 3.3. Section 3.4 covers
our ROM-based semi-honest and malicious protocols. Section 3.5 covers our standard model PSI.
This chapter appears in the full version [BC23].

Contents
3.1 Motivations and Related Works . 40
3.2 Detailed Contributions . 42
3.3 Technical Overview . 46

3.3.1 New sVOLE-Based PSI for Databases with Small Entries 46
3.3.2 Malicious Security . 49

3.4 PSI from Subfield-VOLE . 50
3.4.1 Membership Batched OPRF . 50
3.4.2 Semi-honest PSI from mOPRF . 54
3.4.3 Malicious PSI from mOPRF . 58
3.4.4 Malicious Dual Execution . 60

3.5 Standard PSI from subfield-ring OLE . 63
3.5.1 Semi-Honest Batch Non-Interactive PSI from Subfield Ring-OLE 64
3.5.2 Maliciously Secure PSI in the Standard Model 66

40 Private Set Intersection

3.1 Motivations and Related Works
Private Set Intersection (PSI) is a cryptographic primitive that allows parties to jointly compute
the set of all common elements between their datasets, without leaking any value outside of the
intersection. It is a special case of secure multi-party computation (MPC). PSI enjoys a wide array
of real-life applications; it is perhaps the most actively researched concrete functionality in secure
computation, and has been the target of a tremendous number of works, see [PSZ14; PSS+15; KKR+16;
RR17; KRT+19; PSW+18; PRT+19; PRT+20; CM20; RS21; GPR+21; RT21a] and references therein
for a sample. As a consequence of this intense research effort, modern PSI protocols now achieve
impressive efficiency features, communicating only a few hundred bits per database items, and
processing millions of items in seconds.

Paradigms for PSI

Many approaches to PSI have been designed over the year. While some early proposals relied on
generic secure computation methods [HEK12], the most efficient solutions to date rely on specialized
techniques. While this fails to capture all proposals, the most prominent modern PSI protocols can
be categorized in four groups.

Key exchange-based. Early PSI protocols relied on techniques based on the Diffie-Hellman key-
exchange [HFH99], and were extended to the malicious setting in [DKT10; JL10]. While these
protocols have relatively low communication, the need to compute multiple exponentiations for
each item gives them relatively poor performances. Nevertheless, recent improvements to these old
protocols [RT21a] show that this approach can be somewhat competitive for very small sets, when
communication is a very scarce resource.

Hashing-based. Cuckoo hashing [PR04] is an efficient hashing technique where items are hashed
into a linear number of bins while guaranteeing that no bin will contain more than one item. For most
of the past decades, the top-performing PSI protocols [PSZ14; PSS+15; KKR+16; HV17; RR17; CLR17;
OOS17; PSW+18; PSZ18] relied on Cuckoo hashing techniques, or variants thereof [PRT+19], usually
combined with fast oblivious transfer extension [IKN+03]. While the more recent OKVS-based
protocols now outperform hash-based protocols, the protocol of [KKR+16] remains among the most
competitive PSI protocols.

OKVS-based. Starting with the work of [PRT+19], a new approach to PSI has been designed, which
relies on a carefully chosen encoding of the datasets with oblivious data structures. The first protocols
required expensive polynomial interpolation [PRT+19; CM20], but a more efficient data structure
called PaXoS was introduced in [PRT+20], which significantly changed the state of affairs, and
led to the most efficient PSI protocol known to date [RS21]. The required data structures have
been recently abstracted out in [GPR+21] under the name oblivious key-value stores (OKVS), and
the work introduced significant improvements in the efficiency and security guarantees of OKVS
constructions. As a consequence, a combination of [RS21] with the latest OKVS of [GPR+21] leads to
a very low-communication PSI protocol (for mid to large databases), still with a very good concrete
efficiency.

Polynomial manipulation. Eventually, starting with the work of [FNP04], several protocols
have been designed that represent the datasets as polynomials over finite fields, and compute set
operations through operations on these polynomials. Notable works include [KS05; DMR+09; HN10;
Haz15; FHN+16; GS19; GN19]. While these protocols are usually much slower than those based on
Cuckoo hashing or OKVS, they offer some advantages, such as realizing stronger functionalities

3.1 Motivations and Related Works 41

(like threshold private set intersection [GS19]) and providing security in the standard model (in
contrast, the most efficient OKVS- or hash-based protocols require the random oracle model, or
some ad hoc family of correlation-robustness assumptions). On the downside, achieving malicious
security with these protocols can be subtle, since one must handle the case where the parties input
zero polynomials. In fact, previous protocols [GN19] which claimed to be secure against malicious
adversaries in this setting have later been broken [AMZ21].

Improving PSI with pseudorandom correlation generators

Pseudorandom correlation generators (PCG) have been introduced in the works of [BCG+17; BCG+18;
BCG+19b] and have been the subject of a long and fruitful line of work [BCG+17; BCG+18; BCG+19b;
BCG+19a; SGR+19; BCG+20b; BCG+20a; YWL+20; CRR21; WYK+21]. At a high level, a PCG allows
two parties to securely stretch long pseudorandom correlated strings from short, correlated seeds.
Securely sharing correlated random strings is a crucial component inmostmodern secure computation
protocols, which operate in the preprocessing model; PCG allows to realize this functionality with
almost no communication. Among their many applications, PCGs allow to construct silent oblivious
transfer extension protocols [BCG+19a], which can realize (pseudorandom)OT extensionwithminimal
(logarithmic) communication.

Since the top-performing PSI protocols rely on efficient OT extension, using PCG-based techniques
to improve their efficiency is a natural idea. And indeed, this was done recently for OKVS-based
PSI in [RS21], leading to the most efficient PSI protocol known to date (OKVS stands for oblivious
key-value store [GPR+21]; the use of OKVS is the leading paradigm for the design of PSI protocols).
To give a single datapoint, computing the intersection between two databases of size n = 220 with
the protocol of [RS21] communicates as little as 426n bits in total. In addition, some of the tools used
in [RS21] have been significantly improved since: replacing their OKVS (which is the PaXoS OKVS
of [PRT+20]) by the more recent 3H-GCT OKVS of [GPR+21], and replacing their PCG (which is
the one from [WYK+21]) by the recent PCG of [CRR21], the cost goes down to an impressive 247n
bits of total communication. In comparison, even the insecure approach of exchanging the hashes of
all items in the databases already requires 160n bits of communication. OKVS-based PSI protocols
are now firmly established as the leading paradigm in the field, and the use of PCGs to reduce their
communication overhead even more seems to further widen the gap with the other paradigms.

Related Work

At the time of writting this work, in a concurrent and independent work, recently accepted at CCS’22,
Rindal and Raghuraman [RR22] introduced a new PSI protocol, using an approach similar to ours: the
authors also leveraged subfield-VOLE to achieve communication independent of the computational
security parameter κ. Our results have been obtained independently of theirs, around the same time
period. Although their main result bears similarities to our first two contributions, we highlight
some important distinctions between our work and theirs:

• The work of [RR22] uses an OKVS-based construction, and achieves a receiver-to-sender
communication of (λ+ 2 log n) · n. In contrast, we use a hash-based protocol, and achieve an
(ℓ− log n) · n receiver-to-sender communication. Therefore, we get smaller communication
overall in the setting where the databases have small entries, but a slightly larger computation.

• For malicious security, the work of [RR22] only considers the standard paradigm of previous
works (e.g. [RS21]), hence having a O(κ · n) receiver-to-sender (and overall) communication.
In contrast, we give two protocols, including one based on dual execution which achieves

42 Private Set Intersection

communication independent of κ (and smaller concrete communication for databases with
small entries).

• Eventually, our last contribution, a “batchable” ring-OLE-based malicious PSI in the standard
model with low communication, is unique to our work.

3.2 Detailed Contributions
In this chapter, we thoroughly investigate how the use pseudorandom correlation generators (PCGs)
can reduce communication in PSI protocols. We obtain several contributions:

• A new family of semi-honest hash-based PSI protocols. Our protocols can be instantiated using
several hashing techniques, and achieve very low communication, especially for databases
whose entries have a small bitlength.

• New maliciously secure hash-based PSI protocols. Here, interestingly, we revive the dual exe-
cution technique, which had been used previously to design malicious PSI protocols in [RR17],
but was considered outdated. We show that, combined with our new approach, it leads to very
competitive protocols, which achieve lower communication than all known alternatives for
databases with small entries.

• Eventually, we design a new maliciously secure polynomial-based PSI protocol. Our protocol
enjoys several powerful features: competitive communication, security in the standard model
under the ring-LPN assumption (in contrast, other maliciously secure PSI use the ROM), and
the possibility for a client to publish a single encoding of its database, and later retrieve
the intersection of its database with that of multiple servers independently, with a single
server-to-client message, plus minimal (database-independent) additional communication.

Low communication PSI for databases with small entries. Modern PSI protocols have commu-
nication O(λ · n), where n is the database size, and λ is a computational security parameter. More
precisely, the receiver-to-sender communication is O(λṅ), while the sender-to-receiver communi-
cation is O(κ · n), where κ is a statistical security parameter (typically, λ = 128 and κ = 40). We
introduce a new protocol, that combines hashing techniques (e.g. Cuckoo hashing or its variants,
as initially used in [KKR+16]) with a new PCG-based oblivious pseudorandom function (OPRF). In
contrast to all previous works, our work avoids the O(λ · n) overhead: it reduces the receiver-to-
sender communication to be roughly ℓ · n (where ℓ is the bitsize of the database items), leading to a
significant reduction in the overall communication. To our knowledge, our protocol is the first to
achieve communication independent of λ (up to low order terms). To give a datapoint, for n = 220,
with 64-bit entries, our protocol communicates 210n bits, and with 32-bit entries, it communicates
only 148n bits. For the same parameters, the leading OKVS-based PSI of [RS21] communicates
197n bits, even after improving it with all relevant optimization (such as using the 3H-GCT OKVS
of [GPR+21], and the recent PCG of [CRR21]). We provide further datapoints and comparisons to
the state of the art on Table 3.1, when instantiating our protocols with various hashing methods. For
all other protocols, we take into account the optimization of [TLP+17] which reduces the costs of
sending n elements of bitlength λ+ 2 · log n to n · (λ+ log n). GCH stands for Generalized Cuckoo
hashing (here, with 2 hash functions and 3 items per bin), 2CH for 2-choice hashing, and SH for
simple hashing (N is the number of bins).

Fast maliciously-secure PSI for small entries. We then turn our attention to maliciously secure
PSI.We provide two alternative protocols that achievemalicious security; both use standard paradigms

3.2 Detailed Contributions 43

Table 3.1: Comparison of the communication cost of several PSI protocols in the semi-
honest setting and in the malicious setting, for various choices of the database size n
(we assume that both parties have a database of the same size). ℓ denote the bit-length
of the inputs in the database; we set the statistical security parameter κ to 40 (for usual
applications) or 30 (which can be suitable for lower risk applications).

n = 214 n = 216 n = 220 n = 224

Semi-honest setting

KKRT16[KKR+16] 930n 936n 948n 960n
PRTY19[PRT+19] low* 491n 493n 493n 494n
PRTY19[PRT+19] fast* 560n 571n 579n 587n
CM20[CM20] 668n 662n 674n 676n
PRTY20[PRT+20] 1244n 1192n 1248n 1278n
RS21[RS21] 2024n 898n 406n 374n
RS21[RS21] enhanced** 280n 260n 263n 275n

Ours (ℓ = 64, GCH) 246n 220n 210n 209n
Ours (ℓ = 48, GCH) 215n 189n 179n 178n
Ours (ℓ = 32, GCH) 184n 158n 148n 147n

Ours (ℓ = 64, 2CH) 214n 190n 183n 185n
Ours (ℓ = 48, 2CH) 193n 169n 162n 164n
Ours (ℓ = 32, 2CH) 171n 148n 141n 142n

Ours (ℓ = 64, SH, N = n/10) 332n 302n 284n 276n
Ours (ℓ = 48, SH, N = n/10) 261n 230n 209n 198n
Ours (ℓ = 32, SH, N = n/10) 191n 158n 133n 120n

Ours (ℓ = 64, SH, N = 1) *** 154n 131n 125n 128n
Ours (ℓ = 48, SH, N = 1) *** 138n 115n 109n 112n
Ours (ℓ = 32, SH, N = 1) *** 122n 99n 93n 96n

Malicious setting

RS21[RS21] enhanced** 343n 320n 315n 318n

Ours (ℓ = 48, SH, N = n/10) 430n 393n 356n 332n
Ours (ℓ = 40, SH, N = n/10) 359n 321n 281n 253n
Ours (ℓ = 32, SH, N = n/10) 289n 249n 205n 175n

* PRTY19 has two variants, SpOT-low (lowest communication, higher computation) and
SpOT-fast (higher communication, better computation). Both use expensive polyno-
mial interpolation and require significantly more computation compared to all other
protocols in this table.

** Using the 3H-GCT OKVS of [GPR+21] instead of PaXoS, and the VOLE of [CRR21]
instead of the one from [WYK+21].

*** Using N = 1 requires an expensive degree-n polynomial interpolation.

44 Private Set Intersection

for upgrading PSI to malicious security. The first protocol combines our new PCG-based OPRF with
simple hashing, and applies the standard paradigm used in most previous OKVS-based PSI to achieve
malicious security (e.g. [RS21]). This requires increasing the sender-to-receiver message length, from
O(κ · n) to O(λ · n) (κ is a statistical security parameter, λ is a computational security parameter;
typically, κ = 40 and λ = 128) to allow for extraction of the sender input.

More interestingly, our second protocol applies dual execution [RR17] to our PCG-based protocol
with simple hashing. We observe that, in our context, this allows to achieve malicious security
without having to increase the length of the sender-to-receiver message, at the cost of increasing
the receiver-to-sender communication by a factor 2. Since our approach makes this communication
as low as O(ℓ · n), this turns out to be an excellent tradeoff whenever the database entries are not
too large. Therefore, our results show that the landscape of maliciously secure PSI is more subtle
than previously thought: for large entries, the standard approach still dominates, but for smaller
entries (e.g. ℓ ≤ 40), the dual execution technique leads to better performances. This revives the dual
execution technique, which was previously considered obsolete compared to the modern alternatives.

Efficient PSI in the standard model. Eventually, our last contribution is a new “polynomial-based”
PSI protocol that does not rely on the random oracle model, following the high level structure of
previous works [KS05; GS19; GN19]. To this end, we introduce the notion of PCG for the subfield
ring-OLE correlation, and show how a simple variant of the recent PCG for ring-OLE of [BCG+20b]
leads to efficient instantiations of this primitive. Then, we describe a new PSI protocol built on top of
this PCG, which enjoys a number of very interesting features.

Security features. Our PSI protocol is in the standard model: unlike our first protocol, it does not
require the random oracle model, or any tailor-made correlation-robustness assumptions. We rely
solely on the (relatively well-established) ring-LPN assumption over polynomial rings with irre-
ducible polynomials. To our knowledge, our protocol is the first standard model protocol which
offers competitive performances compared to protocols using the random oracle heuristic or tailored
assumptions. Furthermore, our PSI protocol enjoys full malicious security (for both parties) almost
for free. This stems from the use of PCGs, which allows to confine the “price” of achieving mali-
cious security to the distributed seed generation only, which has logarithmic communication and
computation (in the set size n).

We note that, though malicious security comes for free communication- and computation-wise,
the tweaks used to guarantee malicious security in our protocol are not straightforward. In fact,
achieving malicious security efficiently in polynomial-based PSI protocols is known to be complex
and error prone. For example, previous works [GN19] used a superficially similar approach and
claimed malicious security, but their protocol was found to be insecure in a recent preprint, which
described powerful concrete attacks on this proposal [AMZ21]. Leveraging the specific structure of
our protocol, we manage to get around these nontrivial subtleties with careful structural checks, for
a minimal cost (independent of the database size).

Efficiency features. Our PSI protocol enjoys a very low communication, considerably lower than all
previous PSI protocols in the standard model which we are aware of (excluding iO- or FHE-based pro-
tocol, which can have very low communication but poor concrete efficiency). In fact, communication-
wise, our PSI protocol is even on par with the best ROM-based PSI protocols of previous works.
Concretely, for sets of size nwith ℓ-bit entries, our protocol communicates (2ℓ+3κ+3 log n)·n+o(n)
bits. To give a single datapoint, for ℓ = 32 and n = 220, we estimate the total communication to
be 278n bits. This is on par with the best maliciously secure protocol [RS21], which communicates
279n bits in the same setting, with comparable computation (it also uses polynomial interpolation),
but without standard model security.

3.2 Detailed Contributions 45

On Table 3.2, we compare our protocol to the current fastest maliciously secure PSI protocols [PRT+20;
RT21b; RS21], we apply the encoding technique of [TLP+17] to all protocols. For fairness of compari-
son, since our standard model PSI uses interpolation, we compare it to RS21 with an interpolation-
based OKVS (which has better communication), and we compare our other PSIs with RS21 instantiated
with (computationally) efficient OKVS. As the table shows, the communication of our protocol is
almost on par with that of the best protocol (the protocol of [RS21], enhanced with the latest VOLE
protocol) for small-ish input size, and large enough set sizes. Yet, our protocol is in the standard
model under the ring-LPN assumption, while [RS21] is only proven secure in the ROM.

Table 3.2: Comparison of the communication cost of several PSI protocols in the malicious model, for
various choices of the database size n (we assume that both parties have a database of the same size) and
statistical security parameter κ = 40. ℓ denote the bit-length of the inputs in the database.

Protocol Communication Hardness
Assumption

Standard
Modeln = 216 n = 218 n = 220 n = 222 n = 224

Our Standard PSI Ring-LPN ✓

ℓ = 64 724n 423n 342n 324n 323n + OT
ℓ = 48 692n 391n 310n 292n 291n
ℓ = 32 660n 359n 278n 260n 259n

RS21[RS21] en-
hanced

318n 286n 279n 279n 280n LPN + OT ✗

Our Direct PSI

LPN + OT ✗

ℓ = 64 421n 385n 374n 369n 365n
ℓ = 48 348n 311n 298n 292n 286n
ℓ = 32 277n 237n 223n 215n 208n
Our Dual PSI
ℓ = 64 609n 535n 511n 499n 489n
ℓ = 48 465n 388n 361n 345n 333n
ℓ = 32 321n 240n 210n 192n 176n

PRTY20[PRT+20] 1766n OT ✗

RT21[RT21b] 512n DH ✗

RS21[RS21] en-
hanced

320n 315n 315n 317n 318n LPN + OT ✗

Batch non-interactive PSI. On top of these security and efficiency features, the structure of our
protocol allows to obtain a powerful interaction pattern: it leads to a batch non-interactive PSI, where
after a short interaction with each server, a client C with setX can broadcast a single encoding of its
database, and receive afterwards at anytime a single message from each server Si with set Xi (plus,
in the malicious setting, a small database-size-independent 2-round structural check), from which
they can decode X ∩Xi. To achieve this feature, we build upon the fact that the PCG for subfield
ring-OLE correlations is programmable, which means that we can enforce that a target party will
receive the same pseudorandom string across executions with many different parties. Concretely,
we achieve the following form of batch non-interactive PSI between a client C with database X and
multiple servers Si with datasets Xi (all of size n):

1. In a preprocessing phase, C interacts with each of the servers, using O(log n) communication
and computation in each interaction, in a small constant number of rounds.

46 Private Set Intersection

2. Then, C performs a single Õ(n) cost local computation, and broadcasts a single 2ℓn-size
encoding EX of X .

3. Each server Si can, at any time, send a single message Mi = m(Xi, EX), of length 3(κ +
log n)n, using Õ(n) computation.

4. Eventually, givenX andMi, the client C can run a Õ(n) cost decoding procedure and recover
X ∩Xi, without further interaction.

When the number of servers becomes large, our batch PSI protocol leads to strong savings for
the client compared to executing a PSI protocol individually with each server. Furthermore, in this
setting, the amortized communication (per PSI instance) is reduced to (2ℓ/NS+3κ+log n) ·n+o(n),
where NS denotes the number of servers. Even for relatively small number of servers, the amortized
communication quickly outperforms that of even the best ROM-basedmaliciously secure PSI protocols.
For example, for n = 224 and ℓ = 32, the amortized communication per secure set intersection
approaches 195n bits with our protocol, versus 280n for [RS21].

3.3 Technical Overview

Notation. We typically write Fq to denote a field with and arbitrary subfield Fp, where p is a prime
power and q = pt. We use Rp = Fp[X]/F(X) for the ring over the field Fp where F (x) is some
polynomial, and also denoteRq = Fpt [X]/F(X). Note that all operations in our paper are field/ring
operations not modular arithmetic.

Our starting point is the classical KKRT protocol [KKR+16], which combines Cuckoo hashing with
a batch related-key oblivious pseudorandom function (BaRK-OPRF). We assume some familiarity with
the KKRT protocol in this technical overview. For completeness, we provide a high level overview
of KKRT, the notion of BaRK-OPRF (batch related-key oblivious pseudorandom function) . Our
construction will also rely on a functionality that distributes subfield vector-OLE correlation (the
sVOLE functionality): Alice gets (u,v), and Bob gets (∆,w = ∆u+ v). Such correlation can be
distributed with very low communication using pseudorandom correlation generators.

3.3.1 New sVOLE-Based PSI for Databases with Small Entries

Subfield-VOLE leads to a simple and natural construction of BaRK-OPRF. Let ℓ be the bitlength of
Alice’s inputs, and let x = (x1, · · · , xn) be the inputs of Alice, viewed as elements of F2ℓ . We assume
for simplicity that ℓ divides λ, the computational security parameter. Alice and Bob use an sVOLE
protocol (e.g. [CRR21]) over the field F2λ , with subfield F2ℓ ; let (u,v) be the output of Alice, and
(∆,w) be the output of Bob. Recall that w = ∆ · u+ v. Alice sends z = x− u to Bob, who defines
the BaRK-OPRF keys to be∆ and (K1, · · · ,Kn) = ∆ · z+w. The BaRK-OPRF is defined as follows:
F∆,Ki(y) = H(i,Ki −∆ · y) (all operations are over F2λ). Eventually, Alice outputs (H(i, vi))i≤n.
Observe that

H(i, vi) = H(i, wi −∆ui) = H(i,Ki −∆(zi + ui))

= H(i,Ki −∆ · xi) = F∆,Ki(xi)

The use of sVOLE, rather than OT extension as in the original KKRT BaRK-OPRF, has two main
advantages: first, the bitwise AND is now replaced by a field multiplication. In particular, this means
that we do not need anymore to use error-correcting codes, and that y ·∆ retains the entire entropy

3.3 Technical Overview 47

of∆. In other words, it suffices for∆ to be λ-bit long to achieve λ bits of security for the construction
(in contrast, KKRT had to use around 5λ bits). Second, and most importantly, the use of subfield VOLE
allows us to completely decorrelate the size of u from that of∆, something which can fundamentally
not be achieved with the INKP OT extension. Concretely, this means that u only needs to mask the
input vector x of Alice. If x ∈ Fn

2ℓ
, then so do u and z: the communication now depends solely on

the input size.
In total, our BaRK-OPRF communicates ℓ · n bits, plus the cost of distributing the seeds for the

sVOLE generator. Using the protocol of [BCG+19a] to distribute the seeds, the cost is logarithmic in
n, hence its effect on the overall communication vanishes for large enough n.

Specifically, using the protocol of [BCG+19a] to distribute the seeds1 adds a (2 log n + 9) · tλ
overhead, where t is a computational security parameter for the underlying LPN assumption, which
is slightly smaller than λ (for example, according to Table 1 of [BCG+19a], t = 118 suffices to get
128 bits of security for the underlying LPN assumption, when n = 220). This cost is logarithmic in n,
hence its effect on the overall communication vanishes for large enough n. Concretely, for n = 220,
this amounts to a total communication of (ℓ+ 0.7) · n bits (where the seed distribution contributes
only 0.7n).

Combining the new OPRF with permutation-based hashing. Plugging our new BaRK-OPRF
into KKRT, and using the same parameters for Cuckoo hashing, leads to a protocol with total
communication (1.3 · ℓ+ 3 · (κ+ 2 log n))n+ o(n) bits (where the o(n) terms capture the costs of
distributing the PCG seeds). Concretely, for n = 220 and ℓ = 32 (resp. 64), this already brings the cost
down, from 1008n bits to 282n bits (resp. 324n bits). However, this can be further improved using
the well-established notion of permutation-based hashing [PSS+15]. Concretely, in permutation-based
hashing, an item x is written as xL||xR, where xL is log(1.3n)-bit long. The item x is inserted by
mapping xR to the bin xL ⊕ f(xR), where f is a k-wise independent hash function, for some large
enough k. This guarantees that no collision occurs, because if two items x, x′ end up mapping the
same value to the same bin, this means that xR = x′R and xL⊕ f(xR) = x′L⊕ f ′(x′R), hence x = x′.
When multiple hash functions are used, as in Cuckoo hashing, the index of the hash function must
be appended to xR.

Interestingly, our use of sVOLE is crucial to enabling a permutation-hashing-based optimization:
the latter only provides savings when the communication involves a O(ℓ · n) component (which
neither KKRT nor any modern OKVS-based PSI has). In our protocol, however, it further reduces
the communication to (1.3 · (ℓ − log(1.3n) + 1) + 3 · (κ + 2 log n))n + o(n) bits, which gives
275n bits for n = 220 and 32-bit items, or 317n bits for 64-bit items. In itself, this is a really small
communication improvement. However, it has an important consequence: it implies that the Alice-to-
Bob communication is now completely dominated by the Bob-to-Alice communication. Concretely,
this means that we can easily afford to use a much higher number of bins (which is 1.3n currently)
if it can allow us to reduce the number of hash functions (which is 3). This brings us to our last
optimization.

Packing multiple items per bin with generalized Cuckoo hashing. In this last optimization,
our goal is to reduce the number of hash functions used in the Cuckoo hashing protocol, from 3 to 2,
by increasing the number of bins to compensate. Unfortunately, this does not work directly with
standard cuckoo hashing even while using a reasonably small stash since the cost of handling the
stash is high, and nullifies all communication benefits of using two hash functions in the first place.

Instead, we use a different approach: we add one degree of freedom to the Cuckoo hashing
1This protocol uses a length-t reverse VOLE protocol as a blackbox, which we instantiate with the construction

of [ADI+17].

48 Private Set Intersection

parameters, by allowing bins to contain multiple items. This generalization of Cuckoo hashing is not
new: it has been studied in details in several works [DW07; Wie+17], because it comes with a much
nicer cache-friendliness than standard Cuckoo hashing.

In (d, k)-Cuckoo hashing, n items are mapped to (1 + ε) · n bins using k hash functions, and
each bin is allowed to contain up to d items. Allowing more items per bins significantly improves
the efficiency; for example, (3, 2)-Cuckoo hashing is known to perform strictly better than standard
(1, 3)-Cuckoo hashing in terms of occupancy (i.e., the total number of slots N = d · (1 + ε) · n
which must be used to guarantee a o(1) failure probability). Based on existing analysis of this
variant [Wie+17], it seems reasonable to expect that (3, 2)-Cuckoo hashing already achieves a strictly
smaller failure probability compared to (1, 3)-Cuckoo hashing, with a smaller number of bins.

We relied on extensive computer simulations on small values of n (from 256 to 2048) to select
parameters, and extrapolated from these results parameters for larger values of n. More precisely, we
ran 107 experiments with (3, 2)-Cuckoo hashing for n ∈ {28, 29, 210} (we also experimented with
211, but with a smaller number of experiments) with c · n bins for various values of c. Even for a
value as low as c = 0.65 and values of n as low as 29, our experiments never reported any insertion
failure, indicating that the empirical failure probability should already be way below 2−20. Since
the theoretical failure probability is known to scale as O(1/nδ) for some constant δ with reasonably
small constant factors, we extrapolate that for large enough values of n, e.g. n ≥ 218, the failure
probability should be well below 2−40.

Alternative hashing variants. Alternatively, when allowing multiple items per bins, we can
consider other hashing variants. Two natural choices are two-choice hashing [PRT+19], where each
bin can have up two d items and each item is placed in the least-full of two bins, and simple hashing,
where a single hash function is used to map the items to bins (standard results show that, when
hashing n items to O(n) bins this way, the maximum load with be of the order of log n/ log logn
with high probability). As we will see, these choices of hashing lead to various communication versus
computation tradeoffs in our protocols, and the optimal choice also depends on the database size.

A membership BaRK-OPRF. There remains a non-trivial task: to use some of the above hashing
variants, we need a protocol to handle hashing with up to d items per bins. Intuitively, denoting
xi = (x

(1)
i , · · · , x(d)i) the d entries of the bin i, we want to construct a new kind ofmembership OPRF

(similar in spirit to the notion of multi-point OPRF in the literature), where Bob obtains F∆,Ki(y)

and Alice obtains the set F∆,Ki(xi) = {F∆,Ki(x
(j)
i)}j≤d. This implies that F∆,Ki(y) ∈ F∆,Ki(xi)

if and only if y is equal to any entry of xi, and F∆,Ki(y) looks pseudorandom to Alice otherwise.
Going back to the BaRK-OPRF, recall that for a bin i where Alice placed xi and Bob placed yi,

Alice computes H(i, vi) and Bob computes H(i,Ki −∆yi) = H(i,∆ · (xi − yi) + vi). Here, we
view the xi − yi term as Pxi(yi), where Pxi = X − xi is a degree-1 polynomial with root xi. This
view suggests a natural generalization of this approach, where the Pxi polynomials are replaced by
higher degree polynomials. Define Pxi

to be the polynomial
∏d

j=1(X − x
(j)
i), and let (cj,i)0≤j≤d−1

denote its coefficients: Pxi
(X) = Xd +

∑d−1
j=0 cj,i ·Xj . Our new membership BaRK-OPRF is a direct

generalization of the BaRK-OPRF from Section 3.3.1, which we sketch below.

Our construction. Let m be the bitlength of Alice’s inputs inside the bins, and let (x1, · · · ,xN)
be the inputs of Alice in each of the N bins, where the inputs in each bin are viewed as length-d
vectors of elements of F2m . We assume for simplicity thatm divides λ, the computational security
parameter. Alice and Bob use d sVOLE protocol (e.g. [CRR21]) over the field F2λ , with subfield F2m ,
with the same value∆.2 Let (uj ,vj)j≤d be the outputs of Alice, and (∆, (wj)j≤d) be the output of

2Note that all known sVOLE protocols allow Bob to choose the value of ∆, hence Bob can enforce the use of the same

3.3 Technical Overview 49

Bob. Recall that wj = ∆ · uj + vj .
For eachxi, let (c0,i, · · · , cd−1,i) be the coefficients of the polynomialPxi

(omitting the coefficient
of Xd, which is always 1). Let cj denote the vector (cj,i)i≤N for j = 0 to d− 1. Alice sends zj =
cj − uj for j = 0 to d− 1 to Bob, who defines the membership BaRK-OPRF keys to be ∆ and Ki =
(kj,i)0≤j≤d−1 = (∆ · zj,i + wj,i)0≤j≤d−1 for i = 1 to N . Define the following degree-d polynomial
P∆,Ki over Fq : P∆,Ki(X) = ∆ ·Xd +

∑d−1
j=0 kj,i ·Xj . The OPRF is defined as follows: F∆,Ki(y) =

H(i, P∆,Ki(y)) (all operations are over F2λ). Eventually, for each bin i, Alice sets her d tuple of
outputs to be F∆,Ki(xi) = {H(i,

∑d−1
j=0 vj,i · (x

(k)
i)j}k≤d. Observe that, since kj,i = ∆zj,i + wj,i =

∆cj,i + vj,i for all i, j, we have H(i, P∆,Ki(y)) = H
(
i,∆ ·

(
yd +

∑d−1
j=0 cj,iy

j
)
+
∑d−1

j=0 vj,iy
j
)
,

which is equal to H
(
i,∆ · Pxi

(y) +
∑d−1

j=0 vj,iy
j
)
. Therefore, if there exists k ∈ {1, · · · , d} such

that y = x
(k)
i , we have Pxi

(y) = 0, and H(i, P∆,Ki(y)) = H(i,
∑d−1

j=0 vj,i · (x
(k)
i)j) ∈ F∆,Ki(xi).

On the other hand, whenever Pxi
(y) ̸= 0, then the ∆ · Pxi

(y) term in the hash makes the output
pseudorandom from the viewpoint of Alice, under the correlation robustness of the hash function.

Tying up loose ends. Using the new construction from the previous Section, together with (3, 2)-
Cuckoo hashing, leads to a total communication of (0.65 ·3(ℓ− log(0.65n)+1)+2 ·(κ+2 log n))n+
o(n) bits, where the o(n) corresponds to the cost of setting up the PCG seeds. For n = 220 and 32
bits items, this gives 148n bits of communication. We mention a few remaining details. First, in the
construction of membership BaRK-OPRF, Alice and Bob need to invoke d = 3 length-N sVOLE. In
fact, it suffices to invoke a single length-3N sVOLE, and to cut the output in three equal length parts,
to obtain the necessary correlation. This means that the concrete cost of distributing the sVOLE
seeds remains that of generating a single sVOLE (e.g. ≈ 0.7n bits for n = 220).

Second, in the above, we overlooked an important subtlety: a bin can possibly contain less than
d items. In KKRT, this was handled by adding dummy items to empty bins. We use instead a more
efficient approach with a negligible extra cost called a variant of our OPRF (details in section 3.4).

3.3.2 Malicious Security

We then turn our attention to maliciously secure PSI. Here, it is well known that Cuckoo hashing and
two-choice hashing are not usable. Consequently, we focus on simple hashing as our choice of the
underlying hash technique. Using maliciously secure subfield-VOLE, which can be implemented very
efficiently [BCG+19a; CRR21], we enhance our membership BaRK-OPRF to the malicious setting,
with a minimal overhead. Then, we apply two standard methods to achieve security against malicious
adversaries in our PSI protocol:

First method: direct approach. The first method increases the PRF output length to λ. Using the
analysis of [RS21], this suffices to allow for extracting the input of a malicious sender. However, this
makes the communication depend linearly on λ, which severely harms communication complexity.

Second method: dual execution. To recover a λ-independent communication complexity, we then
turn our attention to the dual execution technique [RR17]. Here, the idea is simple: the parties will
invoke the malicious BaRK-OPRF twice, exchanging their roles. Then, the sender sends, for each entry
x of his database, a value of the form PRFA(x)⊕PRFB(x), where PRFA(x) is obtained by the sender
when invoking the BaRK-OPRF functionality as sender, and PRFB(x) is the PRF output obtained
when invoking the functionality as receiver. Here, it becomes possible to extract the input set of
each party simply from its call as receiver to the BaRK-OPRF functionality, which does not require to

∆ across all instances.

50 Private Set Intersection

increase the output length of the OPRF. The price to pay is that the protocol now uses two calls to the
BaRK-OPRF. Concretely, the total communication becomes (2·N ·d(ℓ−log(N))+(κ+log n))n+o(n),
where N is the number of bins, d the maximum load of a bin, and ℓ the input size (e.g., for n = 220,
one can choose N = n/10 and d = 47, see [RR17, Figure 5]). For small database entries, this
outperforms all known malicious PSI protocols.

3.4 PSI from Subfield-VOLE

3.4.1 Membership Batched OPRF

Our BaRK-OPRF allows the sender to hold a set of keys (ki)i≤N such that each key is assigned
with a tuple of d input elements of the receiver and then the receiver learns a PRF output on each
element in this tuple corresponding with the same key. More formally, denoting xi = (x

(1)
i , · · · , x(d)i)

consisting of d entries, the sender gets F (i, y) and the receiver obtains a set {F (i, x
(j)
i)}j≤d such that

F (i, y) ∈ {F (i, x
(j)
i)}j≤d if and only if y is equal to any entry of xi, and F (i, y) looks pseudorandom

to the receiver otherwise.

Figure 3.1: Ideal functionality Foprf

PARAMETERS:

Fp is a finite field. There are 2 parties, a sender and a receiver with input set
X = {x1,x2, . . . ,xN} ⊆ Fp where xi = (x

(1)
i , · · · , x(d)

i).

FUNCTIONALITY:
• Wait for input (sender, id) from the sender and (receiver, id,X) from the receiver.
The functionality samples a PRF F then ∀x ∈ xi outputs F (i, x) to the receiver for
i ∈ [1, N].

• When the sender inputs any (i, y) ∈ [1, N]× Fp, functionality gives F (i, y) to the
sender.

Main construction. Assume that the receiver inputs the set ofn = Nd elements: X = {x1,x2, . . . ,xN} ⊆
Fp where xi = (x

(1)
i , · · · , x(d)i) . First, the sender and the receiver invoke the FsVOLE protocol of

dimension n, with their roles reversed, to get a random sVOLE correlation. Specifically, the receiver
learns a pair of vectors (u,v) where u ∈ Fn

p , v ∈ Fn
q , the sender gets∆ ∈ Fq and w := ∆ · u+ v.

Denoting u = (u1,u2, . . . ,uN) where (uj,i)1≤j≤d are d entries of vector ui. This notation is
the same for v,w. Consider xi and its associated polynomial as Pxi

(X) =
∏d

j=1(X − x
(j)
i) =

Xd +
∑d

j=1 cj,i ·Xj−1 where cj,i ∈ Fp for i ∈ [1, N], j ∈ [1, d].
Now, the receiver defines ci := (cj,i)j≤d, c := (c1, c2, . . . , cN), and then ∀i ∈ [1, N] sends to

the sender zi := ci − ui ∈ Fd
p. Above, the ui are masks for the coefficients ci of (the polynomial

associated) xi. Indeed, ui are distributed uniformly at random in the subfield Fp, then the vector zi
is a uniformly random over Fn

p from the viewpoint of the sender. The two parties will run a coin
flipping protocol to get a random value t← Fq . For i ∈ [1, N], the receiver defines the PRF output
on each input x ∈ xi as F (i, x) = H

(
i|t|x ,

∑d
j=1 vj,i · xj−1

)
.

On the other hand, after receiving the vectors zi, for i ∈ [1, N], the sender defines the vector
ki := wi +∆ · zi. As a consequence, for any input (i, y) ∈ [1, N]× Fp, its PRF output is computed
as: F (i, y) = H

(
i|t|y , ∆ · yd +

∑d
j=1 kj,i · yj−1

)
.

3.4 PSI from Subfield-VOLE 51

Correctness and Security. To see why PRF output is defined as above. Observe that ki :=
wi +∆ · zi = vi +∆ · ci. Then, we have

∆ · yd +
d∑

j=1

kj,i · yj−1 = ∆ · yd +
d∑

j=1

(vj,i +∆ · cj,i) · yj−1

= ∆ · (yd +
d∑

j=1

cj,i · yj−1) +

d∑
j=1

vj,i · yj−1 = ∆ · Pxi
(y) +

d∑
j=1

vj,i · yj−1

so if y ∈ xi then Pxi
(y) = 0 which leads to F (i, y) ∈ {F (i, x

(j)
i)}j≤d.

Theorem 3.4.1. The protocolΠoprf (Figure 3.2) instantiated with random oraclesH,H′, securely realizes
the ideal functionality of Foprf (Figure 3.1) against a malicious setting in the FsVOLE hybrid model.

Proof. Corrupted sender. The Sim interacts with the sender as follows:
• Sim emulates FsVOLE, waits for sender to send∆,w.

• Sim samples uniformly hr ← Fq and then sends hr to A.

• After receiving hs, Sim samples uniformly vectors (zi)1≤i≤N instead of zi := ci − ui.

• Sim samples uniformly tr ← Fq and programs H′(tr) := hr .

• On behalf of receiver, Sim sends zi and tr to A.

• Sim computes ki = wi+∆zi. WheneverA queries H(i|t|y, q)where q = ∆ ·yd+
∑d

j=1 kj,i ·
yj−1 and H(i|t|y, q) has not been previously queried, Sim emulates Foprf with (i, y) being the
input of sender, Sim samples uniformly a value as F (i, y) and programs

H

i|t|y,∆ · yd +
d∑

j=1

kj,i · yj−1

 := F (i, y)

This simulation is indistinguishable from the real world by the following hybrids:
• Hybrid 0. The same as the real protocol with an honest receiver and FsVOLE is executed honestly.

• Hybrid 1. The same as hybrid 0 except the Sim emulates FsVOLE, receives ∆,w from the A.

• Hybrid 2. On behalf of receiver, Sim samples hr ← Fq and sends it to A instead of hr := H′(tr)
where tr is sampled in Fq . Then before sending the value tr to A, Sim samples tr ← Fq and
programsH′(tr) := hr . The probability of abort whenH′(tr) has been queried previous is negligible
O(1/Fq) = O(2−λ) since tr is sampled uniformly. This hybrid has an identical distribution.

• Hybrid 3. Sim samples uniformly vectors (zi)1≤i≤N fromFp as opposed to zi := ci−ui. Sinceui is
distributed uniformly at random and ci is arbitrary vector in Fp then this hybrid is indistinguishable
from the previous hybrid.

• Hybrid 4. After receiving ts from A. Sim computes ki = wi +∆zi and t := tr ⊕ ts. Whenever A
queries H(i|t|y, q) where q = ∆ · yd +

∑d
j=1 kj,i · yj−1 and H(i|t|y, q) has not been previously

queried, Sim emulates Foprf with (i, y) being the input of sender, Sim samples uniformly a value
as F (i, y) and programs

H

i|t|y,∆ · yd +
d∑

j=1

kj,i · yj−1

 := F (i, y)

52 Private Set Intersection

Figure 3.2: Our batch BaRK-OPRF Πoprf based on subVOLE

PARAMETERS:
• Given Fp ⊆ Fq where Fq ≈ O(2λ), H : {0, 1}∗ × Fq → {0, 1}v and H′ : Fq → Fq

are random oracles.

• The sender has no input and the receiver inputs a set X = {x1,x2, . . . ,xN} ⊆ Fp

where xi = (x
(1)
i , · · · , x(d)

i) and n = Nd.
PROTOCOL:

1. The sender and the receiver invoke to the FsVOLE of dimension n in the Fq over the
Fp with the inverse role. The receiver gets two random vectors u ∈ Fn

p ,v ∈ Fn
q and

the sender receives ∆ ∈ Fq , w := ∆u + v ∈ Fn
q . Denoting u = (u1,u2, . . . ,uN)

where ui = (cj,i)1≤j≤d. This denotation is the same for v,w.

2. The receiver samples tr ← Fq and sends hr := H′(tr) to the sender.

3. The sender samples ts ← Fq and sends hs := H′(ts) to the receiver.

4. The receiver determines the associated polynomial for each xi as

Pxi
(X) =

d∏
j=1

(X − x
(j)
i) = Xd +

d∑
j=1

cj,i ·Xj−1

where cj,i ∈ Fp for i ∈ [1, N], j ∈ [1, d].

5. Denoting ci := (cj,i)1≤j≤d; c := (c1, c2, . . . , cN), the receiver computes zi :=
ci − ui ∈ Fd

p, and then sends zi and tr to the sender.

6. The sender aborts if H′(tr) ̸= hr.

7. The sender sends ts to the receiver, the receiver aborts if H′(ts) ̸= hs and both parties
define t = ts ⊕ tr .

8. The receiver outputs the PRF values on the input x ∈ xi for i ∈ [1, N] as

F (i, x) = H

i|t|x ,

d∑
j=1

vj,i · xj−1

9. For i ∈ [1, N], the sender defines ki = wi +∆zi. For any input (i, y) ∈ [1, N]× Fp,

the sender computes the PRF output by below formula

F (i, y) = H

i|t|y , ∆ · yd +
d∑

j=1

kj,i · yj−1

Sim will abort if there exists (i, y) such that H(i|t|y, q) has been previously queried. Since ts being
an arbitrary value fixed by A from the beginning and tr is uniformly sampled before sending then
t have an uniformly distribution over Fq ≈ O(2λ) which leads to a negligible probability of abort.

Corrupted receiver. The Sim interacts with the receiver as follows:

• Sim emulates FsVOLE functionality, waits for the receiver to send u,v.

• Sim samples uniformly hs ← Fq and then sends hs to A.

3.4 PSI from Subfield-VOLE 53

• After corrupted receiver sends (zi)1≤i≤N , Sim defines ci := zi + ui. From ci, Sim extracts
the set X = {xi}i≤N .

• After receiving tr from A, Sim samples uniformly t ∈ Fq , defines ts := t− tr and programs
H′(ts) := hs then sends ts to A.

• Sim emulates Foprf with X being the input of receiver then Sim samples a sequence of uni-
formly random values which defined as {F (i, x) | ∀x ∈ xi}i≤N . Sim programs

H

i|t|x ,
d∑

j=1

vj,i · xj−1

 := F (i, x)

This simulation is indistinguishable from the real world by the following hybrids:
• Hybrid 0. The same as the real protocol with a honest sender and FsVOLE is executed honestly.

• Hybrid 1. The same as hybrid 0 except the Sim emulates FsVOLE, receiving u,v from the A.

• Hybrid 2. On behalf of sender, Sim samples hs ← Fq and sends it to A instead of hs := H′(ts)
where ts is sampled in Fq . After receiving tr fromA, Sim samples t← Fq and defines ts := t⊕ tr .
Sim programs H′(ts) := hs then sends ts to A. The probability of abort when H′(ts) has been
queried previous is negligible O(1/Fq) = O(2−λ) since t is sampled uniformly and tr is an
arbitrary value. This hybrid has an identical distribution.

• Hybrid 3. After receiving (zi)i≤N from A, Sim computes ci = zi + ui for all i ∈ [1, N].
Now for each i ∈ [1, N], Sim defines the polynomial Pxi

(X) = Xd +
∑d

j=1 cj,i ·Xj−1 and then
extracts a set xi which includes all the root of Pxi

. Formally,

xi = {x ∈ Fp | Pxi
(x) = 0}

This hybrid can not be distinguished with the previous since Sim only extracts set.

• Hybrid 4. Sim emulates Foprf with X = {xi}i≤N being the input of receiver then Sim samples a
sequence of uniformly random values over {0, 1}v which defined as {F (i, x) | ∀x ∈ xi}i≤N .
For each x ∈ xi, Sim aborts if any H(i|t|x, q) where q :=

∑d
j=1 vj,i · xj−1 has been made by A.

The probability of aborting is negligible since t is uniformly distributed over Fq ≈ O(2λ). Sim
programs

H

(
i||t||x ,

d∑
k=1

v(i−1)d+k · xk−1

)
:= F (i, x)

Since the F (i, x) is sampled uniform then this hybrid is indistinguishable with previous one.

• Hybrid 5. Sim will abort protocol if corrupted receiver is able to learn the PRF value on a element
which is not in any set xi for i ∈ [1, N]. This means that the A made a query H (i|t|x, h) such
that x ∈ Fp \ xi for i ∈ [1, N] and h = ∆ · yd +

∑d
j=1 kj,i · xj−1. Observe that

∆ · yd +
d∑

j=1

kj,i · xj−1 = ∆ · Pxi
(x) + vj,i · xj−1

Since ∆ is distributed uniformly over Fq in the viewpoint of A and Pxi
(x) ̸= 0 for x /∈ xi then

the probability of aborting is negligible at most O(1/2q). This concludes the proof.

54 Private Set Intersection

Note that the output v of H is chosen depending on the concrete structure of PSI and the target
setting (semi-honest or malicious). This parameter is detailed in the Section 3.4.2 for a semi-honest
setting and the Section 3.4.3 for a malicious setting.

3.4.2 Semi-honest PSI from mOPRF

A variant of BaRK-OPRF. We now propose a variant of our BaRK-OPRF to deal with the case
when the size of each tuple input is not necessarily equal to d. This means that the receiver now can
divide the input set to N tuples xi and each tuple has less than or equal to d items. Meanwhile, the
sender is not allowed to learn about how many exactly items are in each tuple. This functionality
can be obtained from our BaRK-OPRF plus a small extra cost, i.e., a subfield VOLE of length N over
the subfield F2.

The idea is as follows. The receiver’s input set X = {x1,x2, . . . ,xN} ⊆ Fp where xi =

(x
(1)
i , · · · , x(ji)i), ji ≤ d. The polynomial associated to {xi}i≤N will be expressed as a polynomial of

degree d: Pxi
(X) =

∏ji
j=1(X − x

(j)
i) =

∑d+1
j=1 cj,i ·Xj−1 where cj,i ∈ Fp.

As a result, the set of the coefficients of Pxi
(X) = (c1,i, c2,i, . . . , cd+1,i}. We remark that,

compared to the associated polynomial in our original BaRK-OPRF which has a constant coefficient
of degree d of 1, in our variant version this coefficient will equal 0 or 1 since the degree of Pxi

(X) is
less than or equal to d. So, it requires (d+ 1) masks for this polynomial instead of d, but the mask
for the coefficient of degree d only needs to be in F2. For each tuple, we require an additional value
ui ∈ F2, so in total we need an additional subfield VOLE of length N over the subfield F2.

More formally, the sender and receiver invoke a subfield VOLE of length n over the subfield Fp

as before (all the notations in Figure 3.2 are reused), and additionally invoke another subfield VOLE
instance over the subfield F2 of length N with an inverse role, while the receiver gets u′ ∈ FN

2 ,
and v′ ∈ FN

q the sender holds ∆ ∈ Fq (∆ is the same for each time invoking subfield VOLE) and
w′ := ∆ · u′ + v′. The receiver sends to the sender vectors zi as before, and an extra vector z′
defined as z′i := cd+1,i − u′i for i ∈ [1, N]. The receiver outputs on input x ∈ xi are computed as
F (i, x) = H(i|t|x , v′i ·xd+

∑d
j=1 vj,i ·xj−1). On the other hand, the sender defines their PRF values

on input (i, y) where i ∈ [1, N], y ∈ Fp as F (i, y) = H(i|t|y , (w′
i +∆z′i) · yd +

∑d
j=1 kj,i · yj−1).

Main construction of a newPSI.The sender and the receiver have two input setsX = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn}. Assume that all of these elements have the bit-length ℓ. Intuitively, our
BaRK-OPRF is constructed from subVOLE to handle the case when having multiple items per bin.
Then this specialized BaRK-OPRF can combine with some hashing techniques to form an efficient
PSI protocol. In the next part Section 3.4.2, we discuss these types of hashing. Our PSI protocol is
described in Figure 3.3; it builds upon the protocol of [KKR+16] using GCH and BaRK-OPRF. For
simplicity, we describe our protocol directly with generalized Cuckoo hashing; adapting the protocol
to other variants is immediate. We elaborate on our protocol below. In our protocol, the receiver first
uses (d, k)-Cuckoo hashing to map his input set Y to a table with N bins, note that the bit-length of
the values stored in a bin is ℓ − logN insted of ℓ. Depending on the size of n, we use one of two
approaches to handle the bins which are not full (the threshold was chosen empirically to optimize
communication).

• If n ≥ 220, the variant of our BaRK-OPRF (using an additional subfield VOLE over F2) is used;
for such sizes, the concrete cost of implementing the additional sVOLE vanishes.

3.4 PSI from Subfield-VOLE 55

• Otherwise, when n < 220, the receiver adds dummy items to bins such that each bin contains
exactly d items. To avoid collisions between the dummy items and the elements in the same
bin of the sender, we pad an extra bit to all items in the following way: i|x|b where i is the
index of hash function corresponding with the stored value x while b = 1 if x is a dummy
item added and b = 0 otherwise.

In both case, the sender computes k · n PRF evaluations and sends (shuffled) to the receiver, who
compares them with his OPRF outputs and outputs the intersection set. To reduce the computational
cost in this step, the sender can send separately each set Hi (i ∈ [1, k]) which contains the PRF
outputs of each x ∈ X with the related bin hi(x). Then for each element, the receiver only needs to
search for one set (among k sets Hi) of n items instead of k · n.

Alternative hashingmethods. There are two hashing schemes that can be fit into our PSI structure.
2-choice hashing [PRT+19] is a variant of Cuckoo hashing where one item x is assigned to one of

two bins h1(x) or h2(x). However, there is no restriction on the number of items per bin and an item
is put in a bin which already has fewer items. [PRT+19] proposes both theoretical references and
heuristic parameters for 2-choice hashing, which require only a small number of dummy items. Let
us assume we have n items and 2 hash functions; using 2-choice hashing allows to map n items toN
bins in time O(n log n) where each bin contains at most L = ⌈n/N⌉+ 1 items with a probability
1−O(1/N)L−1.

Simple hashing uses one hash function h to map an item x to bin h(x). For security, the number
of items per bin can leak some information then it requires padding each bin with dummy items until
having an equal number of items per bin. With very high probability, for N = O(n log n) bins, the
maximum possible items per bin is O(log n). The percentage of the occupation of dummy items is
higher than others. However, simple hashing avoids ambiguities about where an item can be placed,
a property which is crucial in the malicious setting.

Parameters. In this section, we discuss concrete parameters used in our new PSI semi-honest
protocol. We use λ = 128 and κ = 40. The protocol contains several parameters:

The length of OPRF output. The output domain of PRF would be {0, 1}v where v = κ + 2 log2(n)
guarantees a 2−κ bound on the collision probability of PRF outputs among the two size-n sets.
Furthermore, communicating the hashes can be reduced to communicating only ≈ κ+ log n bits
per hash, using a heuristic technique of [TLP+17] that directly leads to an optimization of our PSI
protocol.

The size of Fp and Fq in BaRK-OPRF. After using permutation-based hashing, each element is mapped
to a bin with a stored value in this bin, the bit-length reduces from ℓ to ℓ − logN . The input set
of BaRK-OPRF in PSI protocol constructs from stored values concatenating with some extra bits.
Then the bit-length of an input element of BaRK-OPRF is computed as ℓ− logN + 1 if n ≥ 220 or
ℓ− logN + 2 otherwise, i.e., the size of q = 2ℓ−logN+1 or q = 2ℓ−logN+2 respectively.

Generalized Cuckoo hashing. We use a (d, k)-general cuckoo hashing scheme without stash. The
parameters are chosen such that the failure probability is 2−κ. When d = 1, k = 3 these parameters
are identical with KKRT except for the number of bins increases slightly to N = 1.3n which is a
trade-off to obtain no stash. Even with the higher number of bins, our PSI protocol significantly
outperforms KKRT.
To minimize the overall communication, we set k = 2 to reduce the cost of sending k · n PRF
outputs. We used a Python script to simulate randomly assigning n values to N = c · n bins using
(d, 2)-Cuckoo hashing, for several values of d and c, and for n = 29, 210, 211, 212. For a value of c as
low as 0.65, we never observed any insertion failure over 107 trials for each values of n (for n = 212,

56 Private Set Intersection

Figure 3.3: Our new semi-honest PSI protocol from BaRK-OPRF

PARAMETERS:
• The sender and the receiver have respectively input sets X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , yn}, all elements of bit-length ℓ.

• A (d, k)-generalized Cuckoo hashing (GCH) scheme mapping n items to N bins by k hash
functions h1, h2, . . . , hk : {0, 1}∗ → [N] where Nd > n and d = O(1) (see Section 3.4.2).

PROTOCOL:

1. The receiver uses (d, k)-Cuckoo hashing with k hash functions to map the elements in Y to the
table B consisting of N bins, where each bin i has ji ≤ d items.
Denote yj,i is an element in Y assigned to position j of bin i and its stored value in table B is
y′j,i.

2. Depending on the size of n, there are two alternatives:

(a) n ≥ 220, the sender and receiver invoke our variant of Πoprf where the receiver uses the
input set YB = {y1,y2, . . . ,yN} defined as follows:

• yi = {r1,i, r2,i, . . . , rji,i}.
• rj,i = t ∥ y′j,i where t is index of a hash function such that ht(yj,i) = i.

(b) n < 220, the sender and receiver directly invoke the Πoprf where the receiver uses the
input set YB = {y1,y2, . . . ,yN} defined as follows:

• yi = {r1,i, r2,i, . . . , rd,i}.

– For j ≤ ji: rj,i = t ∥ y′j,i ∥ 1 where t is index of hash function such that
ht(yj,i) = i.

– Otherwise, rj,i = t ∥ dummy value ∥ 0 where t←r [1, k].

3. The receiver obtains n instances OPRF:

Y ′ = {PRF(i , ri,j) | i ∈ [1, N] , j ≤ ji}

4. The sender uses the k hash functions to map the n element in X to the N bins. Let xt denote
the value stored at bin ht(x) when mapping x for t ∈ [1, k].

5. The sender computes the sets of k · n PRF outputs:

(a) For n ≥ 220: Ht = {PRF(ht(x) , t ∥ xt) | x ∈ X} for t ∈ [1, k].
(b) For n < 220: Ht = {PRF(ht(x) , t ∥ xt ∥ 1) | x ∈ X} for t ∈ [1, k].

Then the sender randomly permutes and sends each set to the receiver.

6. The receiver finds the intersection:

• if y ∈ Y is mapped to the position j of bin i by function ht then check whether
PRF(i, ri,j) ∈ Ht (ri,j is defined depending on n).

• Outputs the intersection set.

we could only do 106 trials), when using d = 3 items per bins. For d = 2, the failure probability
became noticeable already for c ≈ 1. Based on known theoretical analysis of (d, k)-Cuckoo hashing,
the failure probability is known to scale inverse polynomially with n. Therefore, we expect that for

3.4 PSI from Subfield-VOLE 57

reasonably large values of n (e.g. n ≥ 218), our parameters should guarantee a failure probability
significantly below 2−40.

2-choice hashing. Following the analysis of [PRT+19], we set the number N of bins to n/3, and the
maximum load d = L+ 1 to 4. This guarantees a failure probability which we empirically estimate
to be 1/NL−1, which is below 2−40 for all values of n above 214.

Simple hashing. Eventually, for simple hashing, we set arbitrarily the number of binsN to n/10, and
derive the corresponding value of d from Figure 5 in [RR17]. We note that the parameters for simple
hashing are much less heuristic that the other two, in that concrete bound can actually be achieved
which are relatively close to the heuristic (computer-estimated) bounds. For example, [PRT+19]
experimentally observes that for a 2−40 failure probability, setting d = 47 suffices when using
N = n/10 bins. Using a standard Chernoff bound, it is in fact straightforward to prove formally
that d = 49 already suffices to reach this failure probability, which is very close to the experimental
bound. In contrast, experimental bounds in more complex hashing variants are typically much more
distant from provable bounds. The choice of N = n/10 is entirely arbitrary: any smaller N leads
to better communication, but requires using higher values of d, leading to worse computation (due
to the need to perform N polynomial interpolations with degree-d polynomial). This allows for a
smooth tradeoff between communication and computation, where better computational power can
be used to further reduce the communication. At the extreme end of the spectrum, using N = 1 and
d = n requires one expensive degree-n polynomial interpolation, but can achieve extremely low
communications, e.g., 93n bits of communication for ℓ = 32 and n = 220.

Efficiency. We compare the communication of our protocols, using three hashing methods, on Ta-
ble 3.1. Briefly, though, compared to the protocol of [RS21], and when using a standard choice of
parameters for our protocol (e.g., n = 220, and using generalized Cuckoo hashing with d = 3 and
N = 0.65n), our protocol requires essentially a length-1.9n VOLE (with a small subfield), 0.65n
degree-3 polynomial interpolations (roughly 3n multiplications over a small field), and computing n
hashes. In contrast, the enhanced version of [RS21] (using the OKVS of [GPR+21] and the VOLE
of [CRR21]) will require solving a linear system to set up an OKVS (this requires on the order of
(1.3 log n+ λ)3 multiplications over F2128 , plus O(λn) operations), computing a length-1.3n VOLE
(over F2128), and computing 2n hashes. The cost of the VOLE dominates that of performing n hashes,
so for sufficiently large set sizes (n≫ 220), the protocol of [RS21] should become roughly 30% more
efficient than our protocol computation-wise. For smaller sets (e.g. n ≈ 216), the cost of setting up
the OKVS becomes more significant, requiring around 20n field multiplications over F2128 , hence
the computational efficiency of our protocol becomes roughly on par with that of [RS21]. Of course,
real runtimes can vary due to e.g. cache misses, so these estimations should only be viewed as a first
order approximation indicating that the computational efficiency of our protocols is close to that
of [RS21] (but likely slightly larger).
In terms of computation, the main computational overhead comes from performing N polynomial
interpolations of only degree-d polynomials. Based on our analysis, to achieve 2−κ = 2−40 probability
of insertion failure, the following parameters can be chosen:

• N = 0.65n and d = 3 for generalized Cuckoo hashing (GCH),

• N = 0.33n and d = 4 for two-choice hashing,

• N = n/10 and d ≈ 46 for simple hashing.
As the above illustrates, the cost of performing N polynomial interpolations will be very small
for GCH, two-choice hashing, but becomes higher for simple hashing (though performing n/10

58 Private Set Intersection

degree-46 interpolations remains reasonably fast).

3.4.3 Malicious PSI from mOPRF

In this section, we propose a maliciously secure PSI protocol based on our BaRK-OPRF (Section 3.4.1)
and simple hashing combining a permutation-based hash function. The PSI protocol is shown
in Figure 3.4 and its security against a corrupted adversary is proven in Theorem 3.4.2. The estimated
overhead communication cost of this PSI is Nd(ℓ− logN) + (λ+ log n)n+ o(n). Observe that the
PSI protocol in Section 3.4.2 is insecure against malicious settings since the general hashing scheme
does not allow the simulation in ideal world. To handle this we use simple hashing schemes with
only one permutation-based hash function. This protocol is constructed from the natural approach
used recently in [PRT+19; PRT+20; CM20; RS21], i.e., Alice (a sender) and Bob (a receiver) invoke
the Foprf then Bob gets the PRF values on his input and Alice enables to compute the PRF on any
input so Alice computes on her input after that she sends these PRF values to Bob; Bob compares
and outputs the intersection.

Figure 3.4: Our malicious PSI protocol based on Foprf

PARAMETERS:
• Alice (sender) and Bob (receiver) have respectively input set X = {x1, x2, . . . , xn} ∈ Fp and
Y = {y1, y2, . . . , yn} ∈ Fp, all elements of bit-length ℓ.

• A random hash functions h : {0, 1}∗ → [N].

• A Permutation-based hashing Perh,X maps a set X to table BX consisting of N bins such that
each bin has d slots where Nd > |X|, and d = O(1). Denote Per(x) := (i, x′) where x′ is the
stored value of x in bin i which defined by h and x then Per−1(i, x′) = x.

PROTOCOL:

1. Bob uses Per to map Y to BY , for each empty slot in each bin BY [i], put here a dummy item of
length ℓ− logN .

2. Alice sends (sender, id) and Bob sends (receiver, id,BY) to Foprf then

• Bob receives the Y ′ = {F (i, y′) | y′ ∈ BY [i]}i≤N .

3. For each x ∈ X , Alice queries x to Foprf with corresponding input (i, x′) such that Per(x) =
(i, x′), then Alice gets F (i, x′). Alice sends to Bob

U = {F (i, x′) | x ∈ X ∧ Per(x) = (i, x′)}

4. Now for each y ∈ Y , Per(y) = (i, y′), if F (i, y′) ∈ U then Bob outputs y as an element in the
intersection.

Intuitively, in a malicious setting, when the sender is corrupted, the simulation needs to extract
the sender’s input set X from the queries to Foprf and the set U . Denote F (y) := F (i, y′) where
Per(y) = (i, y′) and the set of all elements queried to Foprf is X ′ where n′ = |X ′|. The extraction
procedure is that X = {x ∈ Fp | x ∈ X ′ ∧ F (x) ∈ U}. Observe that if there exist two distinct
elements x1, x2 ∈ X ′ such that F (x1) = F (x2) ∈ U then more than one element is extracted to X .
The probability of existing collision is 2−v+2 logn′ then one approach to avoid collision is choosing
v = 2λ. However, when v = 2λ, the overhead communication cost significantly increases.

3.4 PSI from Subfield-VOLE 59

Therefore, another approach is that Sim only extracts elements x ∈ X ′ if its PRF is distinct and
appears in U , i.e., x ∈ X ′ such that F (x) ∈ U and ∄x′ ∈ X ′ where F (x) = F (x′). [RS21] proposed
this simulation and claimed that if the output domain of PRF v = λ then this simulation is correct
and can not be distinguishable from the real protocol. We point out the proof of [RS21] has a gap
and show that the output of PRF should be λ+ log n.

Indeed, if there exist some x1, x2 ∈ X ′ such that F (x1) = F (x2) then Sim only needs to
extract x1, x2 when one of them is in Y . Let assume x1 ∈ Y , the probability of F (x2) = F (y) for
some y ∈ Y is 2−v+log (nY) since Y is first fixed before the function F is sampled. [RS21] shows
nY = O(λ) then the security can hold if v = λ. However, this should be v = λ + log nY since
nY = O(poly(λ)) instead of O(λ). In particular, PSI protocols in [RS21] are targeted on large input
set because of the usage of vector OLE.

Theorem 3.4.2. The PSI protocol on Figure 3.4 securely realizes the ideal functionalityFpsi over the field
Fp for set size n and malicious set size nX = n, nY = Nd with statistical security against malicious
adversaries in Foprf hybrid model.

Alice is corrupted. Sim interacts with Alice as below:
• Sim emulates Foprf , extracts the set X ′ containing all elements queried to Foprf . Then Sim
defines a set

X∗ = {x ∈ X ′ | ∄x′ ∈ X ′, x ̸= x′ : F (x) = F (x′)}

• From the set U , Sim defines

X := {x ∈ X∗ | F (x) ∈ U}

then inputs X to Fpsi and obtains the set X ∩ Y .
The simulation is indistinguishable from the real protocol by following hybrids:
• Hybrid 0. The same as real protocol. Bob is honest with his input Y and Foprf is executed perfectly.

• Hybrid 1. Sim emulates the functionalityFoprf , receiving the queries (i, x′) fromA. For each query
(i, x′), Sim determines an element x such that Per(x) = (i, x′) then letX ′ be the set containing of
all such elements. Sim defines

X∗ = {x ∈ X ′ | ∄x′ ∈ X,x ̸= x′ : F (x) = F (x′)}

• Hybrid 2. After A sends the set U , on behalf of Bob, Sim gets U then defines the set

X := {x ∈ X∗ | F (x) ∈ U}

Sim will abort if there exist two distinct values x1, x2 ∈ X ′ such that F (x1) = F (x2) and one of
them being in Y . Since Y is first fixed and then the function F is sampled then w.l.o.g assume
x1 ∈ Y , the probability of F (x2) = F (y) for some y ∈ Y is nY /2

v which is negligible when
v = λ+ log(nY).
Observe that X∗ can have more than n elements but |X| is always less than n since |U | = n and
X∗ contains only elements with distinct PRF values.

• Hybrid 3. Sim inputsX to Fpsi and obtains the setX ∩ Y . Sim outputs it as the output of a honest
Bob.

Bob is corrupted. Sim interacts with Bob as below:

60 Private Set Intersection

• Sim emulates Foprf functionality. Sim gets BY being the input set of receiver to Foprf and then
Sim samples a uniformly random sequence Z = {Zi,y′}i≤N as the output PRF value of the set BY ,
where Zi,y′ corresponds to y′ ∈ BY [i].

• From BY , Sim extracts Y , inputs Y being the receiver’s input to Fpsi, receiving I = X ∩ Y .

• Sim sends to Bob a set U containing of

– The set of |I| values: {Zi,y′ |y ∈ I ∧ Per(y) = (i, y′)}.
– n− |I| uniformly random values in {0, 1}v \ Z .

The simulation can not distinguish from the real protocol by following hybrids:
• Hybrid 0. The same as real protocol except Sim emulates Foprf functionality. Sim gets a
set BY as the input set of Bob to Foprf and then Sim samples a uniformly random sequence
Z = {Zi,y′}i≤N as the output PRF value of the set BY , where Zi,y′ ∈ {0, 1}v corresponds to
y′ ∈ BY [i].

• Hybrid 1. Sim computes the set

Y = {Per−1(i, y′) | ∀y′ ∈ BY [i], i ∈ [1, N]}

Note that |Y | ≤ Nd since corrupted Bob is only allowed to input up to Nd elements to Foprf .
Sim inputs Y to Fpsi on behalf of receiver, receiving I = X ∩ Y .

• Hybrid 2. Sim sends to Bob the set U of n elements consisting of

– The set of |I| values: {Zi,y′ |y ∈ I ∧ Per(y) = (i, y′)}.
– n− |I| uniformly random values in {0, 1}v \ Z .

The simulation can not be distinguishable from the real protocol since the output of F is
pseudorandom over {0, 1}v while {0, 1}v \ Z = O(2λ). This concludes the proof.

In general, the malicious PSI (Figure 3.4) has a communication cost that depends on the security
parameter λ and is dominated by λn. We now present a new PSI protocol that is secure in malicious
setting via a dual execution while its communication cost only depends on the statistic parameter κ
and the set size n. The idea of using a dual execution has been used in [RR17] but when combining
this with our BaRK-OPRF it achieves efficient results, i.e., the total communication cost is only
2Nd(ℓ− logN) + n(κ+ log n) + o(n).

3.4.4 Malicious Dual Execution

Intuitively, we execute Foprf twice while Alice and Bob have the same role. The main idea behind
our approach is as follows:

• Alice with the input set X invokes Foprf as a receiver to learn the set of PRF values of each
element in X . Denote FA(x) for all x ∈ X . While Bob queries Y to Foprf to get FA(y).

• Alice and Bob follow exactly the previous steps with the roles reversed. While Bob with input
set Y can only get the set of PRF values FB(y). Alice queries X to Foprf and obtains FB(x)
for all x ∈ X .

• Alice computes the set E = {F (x) := FA(x) ⊕ FB(x) | x ∈ X} and sends it to Bob. Bob
computes F (y) for all y ∈ Y then check whether it is in E or not. Formally, Bob outputs

{y ∈ Y | F (y) ∈ E}

3.4 PSI from Subfield-VOLE 61

Informally, there are two crucial properties to guarantee the correctness of this construction:
• Since Alice only knows FA(x) for x ∈ X and for x /∈ X the PRF value FA(x) is pseudorandom
in the view of Alice; Alice only can obtain the correct value of F (x) for x ∈ X . Similarly, Bob
can compute correctly only F (y) for y ∈ Y .

• The outputs of PRF are pseudorandom, with a high probability

∀x ∈ X,∀y ∈ Y : F (x) = F (y)⇔ x = y

For security, this scheme can be proven against a malicious adversary since it is possible to extract
the input set of both sender and receiver based on Foprf ideal functionality. We leave the detailed
construction in Figure 3.5 and the formal proof in the Theorem 3.4.3. It requires the output domain
of PRF is v = κ+ 2 log(Nd) ≈ κ+ 2 log n so that the probability of existing two distinct elements
x ∈ X and y ∈ Y such that F (x) = F (y) is negligible 2−κ where |X|, |Y | ≤ Nd.

Figure 3.5: Our second malicious PSI protocol based on Foprf via dual execution

PARAMETERS:
• Alice (sender) and Bob (receiver) have respectively input set X = {x1, x2, . . . , xn} ∈ Fp and
Y = {y1, y2, . . . , yn} ∈ Fp, all elements of bit-length ℓ.

• A random hash functions h : {0, 1}∗ → [N].

• A Permutation-based hashing Perh,X maps a set X to table BX consisting of N bins such that
each bin has d slots where Nd > |X|, and d = O(1). Denote Per(x) := (i, x′) where x′ is the
stored value of x in bin i which defined by h and x then Per−1(i, x′) = x.

PROTOCOL:

1. Preprocessing phase.

• Alice and Bob use Per to map their own set to BX ,BY respectively.
• For each empty slot in each bin BX [i] and BY [i], put here a dummy item of length
ℓ− logN .

2. Alice sends (receiver, id,BX) and Bob sends (sender, id) to Foprf then

• Alice receives the X ′ = {FA(x) | x ∈ X} where FA(x) := PRF (Per(x)).
• For each y ∈ Y , Bob queries Per(y) to Foprf and get FA(y).

3. Similarly, Alice sends (sender, id) and Bob sends (receiver, id,BY) to Foprf then

• Bob receives the Y ′ = {FB(y) | y ∈ Y } where FB(y) := PRF (Per(y)).
• For each x ∈ X , Alice queries Per(x) to Foprf and get FB(x).

4. Alice now sends to Bob the set

E = {FA(x)⊕ FB(x) | x ∈ X}

Now for each y ∈ Y , ifFA(y)⊕FB(y) ∈ E then Bob outputs y as an element in the intersection.

Theorem 3.4.3. The PSI protocol on Figure 3.5 securely realizes the ideal functionality Fpsi (Figure 2.9)
over the field Fp for set size n and malicious set size nX = n, nY = Nd with statistical security against
malicious adversaries in Foprf hybrid model.

62 Private Set Intersection

Proof. Alice is corrupted. Sim interacts with Alice as below:
• When A plays the role of receiver in Foprf , Sim emulates Foprf to get BX . Sim samples a
uniformly random sequence Z = {Zi,x′}i≤N as the output PRF values of the set BX , where
Zi,x′ corresponds to x′ ∈ BX [i].

• From BX , Sim extracts X∗ = {Per−1(i, x′) | ∀x′ ∈ BX [i], i ∈ [1, N]}.

• WhenA plays the role of sender in Foprf , Sim defines a set X̃ containing of all elements x such
that Per(x) has been queried toFoprf ; Sim samples a uniformly random values as {FB(x)}x∈X̃
and give them to A.

• On behalf of Bob, Sim receives the set E from A, Sim defines the set

X = {x ∈ X∗ ∩ X̃ | Per(x) = (i, x′) ∧ FB(x)⊕ Zi,x′ ∈ E}

Sim sends X to Fpsi functionality, receiving I := X ∩ Y .
This simulation can not distinguish from the real protocol by the following hybrids:

• Hybrid 0. The same as real protocol, Bob is honest with the input set Y, andFoprf is implemented
honestly.

• Hybrid 1. Sim emulates Foprf then functionality then

– When Alice is a receiver in Foprf , Sim learns BX which is the input set of Alice and then
Sim samples a uniformly random sequence Z = {Zi,x′}i≤N as the output PRF values of
the set BX , where Zi,x′ ∈ {0, 1}v corresponds to x′ ∈ BX [i].

– When Alice is a sender inFoprf , Sim defines a set X̃ containing of all elements x such that
Per(x) has been queried toFoprf ; Sim samples a uniformly random values as {FB(x)}x∈X̃
and give them to A.

This hybrid is indistinguishable from the previous hybrid since the the outputs of PRF are
pseudorandom.

• Hybrid 2. Sim computes a set

X∗ = {Per−1(i, x′) | ∀x′ ∈ BX [i], i ∈ [1, N]}

Note that, |X∗| ≤ Nd.

• Hybrid 3. On behalf of Bob, Sim gets the set E sending from Alice. Sim defines the set

X = {x ∈ X∗ ∩ X̃ | Per(x) = (i, x′) ∧ FB(x)⊕ Zi,x′ ∈ E}

This hybrid will abort if there exist some x1, x2 ∈ X such that

FB(x1)⊕ Zi,x′
1
= FB(x2)⊕ Zi,x′

2

Observe that {Zi,x′}i≤N is first fixed for elements in X∗ and then the function FB is sampled.
Therefore, the probability of aborting is bounded to (Nd)2/2v which is negligible O(2−κ)
when v = κ+ 2 log n. This deduces that |X| ≤ n.

• Hybrid 4. Sim inputsX to Fpsi functionality, receivingX ∩Y and then outputs it as the output
of honest Bob.

3.5 Standard PSI from subfield-ring OLE 63

Bob is corrupted. Sim interacts with Bob as below:
• Similarly, Sim plays the role of Foprf to get Ỹ ,BY then Sim samples a uniformly random
sequence T = {Ti,y′}i≤N as the output PRF values of the set BY , where Ti,y′ ∈ {0, 1}v
corresponds to y′ ∈ BY [i] .

• From BY , Sim extracts Y ∗ = {Per−1(i, y′) | ∀y′ ∈ BY [i], i ∈ [1, N]}.

• Sim emulates Fpsi functionality with input set Y := Y ∗ ∩ Ỹ , receiving I := X ∩ Y .

• Sim sends to Bob the set containing of

– FA(y)⊕ Ti,y′ for y ∈ I .
– n− |I| uniformly random values in {0, 1}v \ T .

This simulation is indistinguishable from the real protocol by the following hybrids:
• Hybrid 0. The same as real protocol, Alice is honest with the input set X, and Foprf is imple-
mented honestly.

• Hybrid 1. Sim emulates Foprf functionality then

– When Bob is a sender inFoprf , Sim extracts the set Ỹ such that for y ∈ Y , Per(y) has been
queried to Foprf ; Sim give to Bob a uniformly random sequences defined as {FA(y)}y∈Ỹ .

– When Bob is a receiver in Foprf , Sim learns BY which is the input set of Bob and then
Sim samples a uniformly random sequence T = {Ti,y′}i≤N as the output PRF values of
the set BY , where Ti,y′ ∈ {0, 1}v corresponds to y′ ∈ BY [i] .

• Hybrid 2. From BY , Sim computes a set

Y ∗ = {Per−1(i, y′) | ∀y′ ∈ BY [i], i ∈ [1, N]}

Sim emulates Fpsi functionality with input set Y = Ỹ ∩ Y ∗, receiving I := X ∩ Y .

• Hybrid 3. Sim sends to Bob the set E containing of

– T = {FA(y)⊕ Ti,y′ | ∀y ∈ I}.
– n− |I| uniformly random values in {0, 1}v \ T .

This hybrid is indistinguishable from the real protocol since in the view of Bob E consists of
the XOR of pseudorandom values and arbitrary values. This concludes the proof.

3.5 Standard PSI from subfield-ring OLE
In this section, we describe a new PSI protocol, which builds upon a (simple variant of) a pseu-
dorandom correlation generator for the ring-OLE correlation [BCG+20b]. Our protocol enjoys a
number of important features: it is in the standard model, achievesmalicious security at essentially no
cost, has low communication (competitive even with the best maliciously secure PSI protocols in the
random oracle model), and reasonable computation (albeit superlinear in n). Our protocol can also
be generalized to a powerful notion of batch non-interactive PSI, where (after a small logarithmic-cost
preprocessing step with each server) a client can broadcast a single encoding of his database, and
then obtain the intersection with any of the server databases at any time after receiving a single
message from this server. We believe that this functionality itself is of independent interest.

64 Private Set Intersection

3.5.1 Semi-Honest Batch Non-Interactive PSI from Subfield Ring-
OLE

We describe a new PSI scheme in the semi-honest model. Our protocol enjoys two interesting features:
(1) it is in the standard model, and (2) it is a batch non-interactive protocol, a useful communication
pattern that we describe afterward. The full construction is represented on Figure 3.6.

Theorem 3.5.1. The PSI protocol on Figure 3.6 securely realizes the ideal functionality Fpsi over the
field Fp with set size n and malicious set size n′ = nX = nY = 2n, with statistical security against
augmented semi-honest adversaries in the FsOLE hybrid model.

The proof is supported by the lemma below.

Lemma3.5.1. LetF (X) be a degree-n polynomial, q = pt where p is a prime,P (x) ∈ Rp = Fp[X]/F(X)
be an arbitrary polynomial of degree n and R(x) ∈ Rq = Fpt [X]/F(X) be a uniformly random poly-
nomial of degree n. Then

Pr[gcd(P (x), R(x)) ̸= 1] ≤ n2/q.

Proof. gcd(P (x), R(x)) = 1 iff P (x) and R(x) share no common root. A random polynomial over
Rp of degree n has at most n roots, which are distributed uniformly; hence, each root of R(x) is
equal to a root of P (x) with probability at most 1− n/q. Therefore:

Pr[gcd(P (x), R(x)) ̸= 1] = 1− Pr[gcd(P (x), R(x)) = 1]

= 1− (1− n/q)n ≤ n2/q (union bound).

Proof. We first show that the protocol is correct with probability at least 1− n2/q = 1− 2−κ using
q = κ+2 log n. It follows from the description of the protocol that u = pAb0+pBb

′
0, where b0, b′0 are

uniformly random degree-n polynomials overRq . Then x ∈ A∩B implies pA(x) = 0 ∧ pB(x) = 0,
which implies u(x) = 0. In the other direction, it holds by Lemma 3.5.1 that the probability that pA
and b′0 share a common root (i.e. gcd(pA, b′0) ̸= 1) is at most n2/q. Then,

x ∈ I =⇒ pA(x) = 0 ∧ U(x) = 0

=⇒ pA(x) = 0 ∧ pB(x) · b′0(x) = u(x)− pA(x) · b0(x) = 0

=⇒ pA(x) = 0 ∧ pB(x) = 0 (since gcd(pA, r
0
B) = 1 and b′0 ̸= 0 w.h.p),

hence I ⊆ A ∩B, which concludes the proof.
We now turn our attention to security. We use the following fact: given any set S, denoting by

pS ∈ Rp the polynomial whose set of roots is S, it holds that

u = pA · b0 + pB · b′0 = pA∩B ·
(
pA\B · b0 + pB\A · b′0

)
,

where pA\B, pB\A ∈ R2
p are two polynomials of degree at most n and gcd(pA\B, pB\A) = 1.

Alice is corrupted. We describe a simulator Sim which emulates Bob:
• (Setting up the correlation) Sim emulates the functionality FsOLE: when Alice queries FsOLE,
Sim samples and sends two random polynomials (a, sA)←$Rp ×Rq .

• (Client set encoding) upon receiving tA, Sim defines pÃ = a− tA and obtains the roots Ã of pÃ
(note that Bob is ‘augmented semi-honest’, so pÃ is well-formed, but Ã might differ from A).
Sim queries the PSI functionality Fpsi on behalf of Alice with input set Ã and obtains Ã ∩B.

3.5 Standard PSI from subfield-ring OLE 65

• (Server-to-client message) Sim generates a random degree-n polynomial b1 ∈ Rq and picks
v ←$Rq . Sim sets u← pÃ∩B · v and tB ← u+ pÃb1 ·X

n − sA. Sim sends (b1, tB) to Alice.
We prove that the simulated protocol is indistinguishable from an honest execution through a
sequence of hybrids: in the first game, Sim simulates FsOLE honestly, and behaves as a honest Bob
(using pB) otherwise. Sim also extracts pÃ from tA = a− pÃ and queries A to the PSI functionality
on behalf of Alice in the ideal world, obtaining Ã ∩B. This game is perfectly indistinguishable from
an honest execution of the protocol. Then, in the second game, Sim computes tB as pÃ∩B · v+ pÃb1 ·
Xn − sA, where v, b1 are uniformly random degree-n polynomials overRq .

It remains to show that the second game is indistinguishable from the first game. Recall that
u = pÃ∩B ·

(
pÃ\B · b0 + pB\Ã · b

′
0

)
when the parties play honestly, but Alice uses input Ã. From

the viewpoint of Alice, both b0 and b′0 are distributed as uniformly random degree-n polynomials
overRq . By Lemma 3.5.1, this implies that pÃ\B · b0+ pB\Ã · b

′
0 is distributed as a uniformly random

degree-n polynomial v ∈ Rq . By construction, u = tB − pÃb1 ·X
n + sA, hence tB is distributed as

pÃ∩B · v + pÃb1 ·X
n − sA where v is a random degree-n polynomial overRq . This concludes the

proof.

Bob is corrupted. We describe a simulator Sim which emulates Bob:

• (Setting up the correlation) Sim emulates the functionality FsOLE: when Bob queries FsOLE,
Sim samples and sends two random polynomials (b, sB)←$R2

q .

• (Client set encoding) Sim sends a uniformly random polynomial tA ←$Rq .

• (Server-to-client message) Upon receiving (b1, tB), Sim computes w ← tB − sB + tAb and
defines B̄ to be the set of roots of w (since Bob is augmented semi-honest, w = pBb

′
0 has at

least n roots). Sim queries B̄ to Fpsi on behalf of Bob in the ideal world, and gets B̄ ∩A. Sim
outputs Ī ← B̄ ∩A.

tA is distributed exactly as in the honest protocol by construction. It remains to show that Sim’s
simulated output Ī is the same as the honest output Ĩ = A ∩ B̃ with overwhelming probability,
where B̃ is the input used by Bob when computing w = pB̃b

′
0 (which can differ from Bob’s real input

B). This follows from Lemma 3.5.1: since Bob is (augmented) semi-honest, w = pB̃b
′
0 where b′0 is a

uniformly random degree-n polynomial, hence by Lemma 3.5.1, gcd(pA, b′0) = 1 with probability at
least 1− n2/q. Therefore, with probability at least 1− n2/q = 1− 2−κ (using q = κ+ 2 log n), it
holds that Ī = A ∩ B̄ = A ∩ (B̃ ∪ roots(b′0)) = A ∩ B̃ = Ĩ . This concludes the proof.

Above, “augmented semi-honest security” refers to a strengthening of honest-but-curious cor-
ruption where the adversary is allowed to change the corrupted parties’ inputs. This is a standard
strengthening of semi-honest security, which has been argued to better capture real-world secu-
rity [HL10]. It will also facilitate upgrading security to the malicious setting later on.

Batch non-interactivity. To securely realize the functionality FsOLE, we rely on the PCG-based
protocol of [BCG+20b] (using a straightforward adaptation to the subfield setting), which is secure
under the ring-LPN assumption. Interestingly, instantiating the subfield ring OLE this way allows to
import a powerful feature of the PCG of [BCG+20b], which is its programmability: when generating
a ring-OLE correlation, the receiver can ensure that her output a remains identical across multiple
instances of the protocol with different parties.

This feature enables the following communication structure: after a short (logarithmic-communication)
interaction with N servers, a client, playing the role of Alice with input set A, can broadcast a single
compact encoding of her dataset to all the servers (with input sets B1 · · ·BN). Afterwards, each

66 Private Set Intersection

server Bi can at any time send a single message mi to Alice, from which she can recover A ∩ Bi

without further interaction. To our knowledge, this batch non-interactive communication pattern
was never achieved by any prior proposal; we believe that it can make our protocol appealing in
realistic scenarios.

More concretely, after a logarithmic-communication preprocessing phase where Alice sets up
PCG seeds with each of the servers, Alice broadcasts the value tA = a − pA to everyone, which
communicates 2n log p ≈ 2ℓn bits. This message can be seen as a compact public encoding of her
dataset (it is only twice as large as Alice’s set). Afterwards, each server can complete the protocol of
Figure 3.6 by sending a single message (b1, tB) to the receiver, of length 3n log q ≈ 3(κ+ 2 log n)n,
from which the receiver can locally recover X ∩Xi. Furthermore, using the encoding technique
of [TLP+17], the κ + 2 log n term can be reduced to κ + log n (the improvement is based on the
observation that for an appropriate ordering, n random elements of a set of size 2κ+2 logn are on
average at distance 2κ+logn for each other, hence the cost of transmitting them can be reduced to
essentially κ+ log n per element by sending the distance between consecutive elements instead).

Efficiency. The communication cost of protocol (Figure 3.6) is n · (2 log p + 3 log q) + o(n) bits
of communication. Here, the size of the subfield Fp depends only on the bitsize ℓ of the items in
the sets A and B, hence we can set log p = ℓ. As we will see in the analysis, log q must be set to
log q ≈ κ+ 2 log n to guarantee κ bits of statistical security. This leads to a total communication
of n · (2ℓ+ 3κ+ 6 log n) + o(n) bits, which is reduced to n · (2ℓ+ 3κ+ 3 log n) + o(n) with the
encoding of [TLP+17]. The o(n) term above captures the cost of distributing the PCG seeds of the
subfield ring-OLE (we discuss the concrete value of o(n) later on, for our maliciously secure version
of the protocol).

Regarding computation, the computational cost scales as O(n log2 n) due to the fast polynomial
interpolations, or as O(n log n) when using cyclotomic rings. We provide a concrete analysis of the
computational cost of the maliciously secure version of our protocol in Section 3.5.2.

3.5.2 Maliciously Secure PSI in the Standard Model

In this section, we upgrade the security of our protocol to the malicious setting. Our upgrade
introduces only a minimal communication overhead to the protocol, independent of the set sizes n.
The full protocol is represented on Figure 3.7.

Theorem 3.5.2. The PSI protocol on Figure 3.7 securely realizes the ideal functionality Fpsi over the
field Fp with set size n and malicious set size n′ = nX = nY = 2n, with statistical security against
malicious adversaries in the FsOLE-hybrid model.

Proof. We first consider the case where Alice is corrupted. The simulator Sim behaves as follows:
• He waits for the adversary to send (a, sA) to FsOLE and receives tA from Alice. Sim defines
pA ← a − tA and computes Ã = {x ∈ Fp′s.t. pA(map(x)) = 0}, and inputs Ã to the PSI
functionality on behalf of Alice, receiving Ã ∩B.

• He picks a uniformly random degree-n polynomial b1 overRq and sends b1 to Alice.

• Upon receiving y from Alice, Sim computes s′A ← sA−pAb1 ·Xn. Then, if either (1) pA(0) ̸= 1
or (2) y ̸= s′A(0), Sim aborts on behalf of Bob. Otherwise, Sim simulates tB as in the augmented
semi-honest model, picking v ←$Rq and setting tB ← pÃ∩B · v+ pAb1 ·Xn − sA. Sim sends
tB to Alice.

The analysis of this simulator is similar to the analysis in the augmented semi-honest model, up
to two distinctions: first, the extracted polynomial pA is not guaranteed to be of degree n anymore –

3.5 Standard PSI from subfield-ring OLE 67

Figure 3.6: Augmented semi-honest PSI protocol based on ring-OLE

PARAMETERS:
• Two ringsRp = Fp[X]/F(X) ⊆ Rq = Fpt [X]/F(X), where F (X) has degree 2n+ 1.

• The sender (Alice) and receiver (Bob) have respective input sets A =
{a1, a2, . . . , an} ⊂ Fp and B = {b1, b2, . . . , bn} ⊂ Fp.

• A subfield ring-OLE in the ringRq over the subringRp.
PROTOCOL:

1. (Setting up the correlation) Alice and Bob encode their sets to pA =
∏n

i=1(X−ai),
pB =

∏n
i=1(X − bi) respectively, and invoke FsOLE to generate a subfield ring-

OLE correlation over Rp,Rq : Alice receives (a, sA) ∈ Rp ×Rq and Bob receives
(b, sB) ∈ R2

q such that sA + sB = ab.

2. (Broadcasting the client set encoding) Alice computes and sends tA = a− pA to
Bob.

3. (Server-to-client message) Bob sets s′B ← sB − tAb. Then, Bob decomposes b as
b = b0 + b1 ·Xn (where b0, b1 are degree-n polynomials), sets s′B ← sB − tAb, and
picks a random degree-n polynomial b′0 overRq . He sends b1 and tB ← s′B + pBb

′
0

to Alice.

4. (Output) Alice sets u ← tB − pAb1 ·Xn + sA; note that u = pAb0 + pBb
′
0. Alice

outputs the set I = {x ∈ A | u(x) = 0}.

but this corresponds to a malicious adversary using a set of larger size n′ ≤ 2n, which is allowed by
the functionality. Second, we must show that Sim correctly emulates the behavior of an honest Bob
when deciding to abort based on the checks (1) and (2). We show that the simulation is statistically
close to the behavior of an honest Bob. To do so, we consider three cases:

Case 1: y = s′A(0) and pA(0) = 1. In this case, Sim does not abort. We show that an honest Bob
would not abort either:

s′A(0) + s′B(0) = sA(0) + sB(0)− (pA(0)(b1 ·Xn)(0) + tA(0)b(0))

= sA(0) + sB(0)− (pA(0)(b1 ·Xn)(0) + (a(0)− pA(0))b(0))

= a(0)b(0)− (pA(0)(b1 ·Xn)(0) + (a(0)− pA(0))b(0))

= −(b1 ·Xn)(0) + b(0)

= b0(0),

hence Bob does not abort.

Case 2: pA(0) ̸= 1. In this case, check (1) of Sim causes an abort. We show that when this is the
case, Bob would abort as well with high probability, i.e., that y ̸= b0(0)− s′B(0). Indeed,

b0(0)− s′B(0) = b0(0)− sB(0) + tA(0)b(0)

= b0(0)− a(0)b(0) + sA(0) + tA(0)b(0)

= b0(0)− a(0)b(0) + sA(0)− pA(0)b(0) + a(0)b(0)

= b0(0) · (1− pA(0)) + sA(0),

68 Private Set Intersection

Hence if Alice manages to send y = b0(0)−s′B(0), it implies that (y−sA(0)) ·(1−pA(0))−1 = b0(0).
The left-hand side is a value known to Alice, but the right-hand side is the constant coefficient of b0,
which is a uniformly random independent element of Fq. The probability that Alice does not cause
an abort is therefore bounded by 1/q < 1/2κ, hence Bob aborts with probability at least 1− 1/2κ.

Case 3: pA(0) = 1 but y ̸= s′A(0). In this case, check (2) of Sim causes an abort. As we saw in Case 1,
it holds that s′A(0) = b0(0)− s′B(0), hence y ̸= b0(0)− s′B(0), hence Bob necessarily aborts.

Overall, Sim’s emulation of Bob in the pA check phase is 1/2κ-close to the honest game, which
concludes the proof.

We now turn our attention to the case where Bob is corrupted. The simulator Sim behaves as
follows:

• He waits for the adversary to send (b, sB) to FsOLE and sends a uniformly random tA ←$Rp

on behalf of Alice.

• Upon receiving b1 from Bob, Sim defines b0 ← b − (b1 · Xn) (note that b0 might not be a
degree-n polynomial) and sets s′B ← sB − tAb. He sends y ← b0(0)− s′B(0) to Bob.

• Upon receiving tB from Bob, Sim computes w ← tB − sB + tAb and defines the set B̄ = {x ∈
Fp′s.t. w(map(x)) = 0}. Sim queries B̄ to Fpsi on behalf of Bob in the ideal world, and gets
B̄ ∩A. Sim checks whether tB(1)− s′B(1) ̸= 0. It outputs Ī ← B̄ ∩A if this holds, and aborts
otherwise.

The analysis is identical to that of the augmented semi-honest model (note that |B̄| ≤ 2n
by construction), up to Sim’s check that tB(1) − s′B(1) ̸= 0. We show that with overwhelming
probability, Sim aborts if and only if the honest Bob aborts at this stage. Recall that Bob aborts if
u(1) = 0. Then

u(1) = tB(1)− pA(1)(b1 ·Xn)(1) + sA(1)

= tB(1) + sA(1) since pA(1) = 0

= tB(1) + a(1)b(1)− sB(1)

= tB(1) + a(1)b(1)− s′B(1)− tA(1)b(1)

= tB(1) + pA(1)b(1)− s′B(1)

= tB(1)− s′B(1) since pA(1) = 0,

hence Sim aborts iff Bob aborts. This concludes the proof.

Efficiency. Our malicious protocol has minimal communication overhead over our augmented
semi-honest protocol. The main overhead stems from starting from a slightly larger field in which
two elements can be “reserved elements”. If p′ is a prime power and ℓ ≈ log p′, the price to pay is
therefore increasing ℓ to log p where p is the smallest prime power above p′ + 2. While an exact
expression would be rather tedious, for any reasonable input size this cost should be negligible (the
simplest strategy is to pick p′ = 2ℓ and p = 2ℓ+1, in which case ℓ is increased by one bit, but much
better encoding methods exist). Therefore, the communication remains n · (2ℓ+3κ+6 log n)+ o(n)
bits, or n · (2ℓ+ 3κ+ 3 log n) + o(n) with the encoding of [TLP+17].
Computation cost. Note that our standardmodel protocol shares with our other protocols the feature
of having communication independent of λ. Our protocol requires more computation compared to
the best ROM-based protocols, due to its use of polynomial interpolation. However, it still allows for
very fast PSI computation (we estimate a few seconds to compute the intersection between databases
of size 220, on one core of a standard laptop). Concretely, the protocol requires only

3.5 Standard PSI from subfield-ring OLE 69

Figure 3.7: Maliciously secure PSI protocol in the FsOLE-hybrid model

PARAMETERS:
• A field Fp′ and two ringsRp = Fp[X]/F(X) ⊆ Rq = Fpt [X]/F(X), where F (X) has
degree 2n + 1 and |Fp′ | ≤ |Fp| − 2. map is an efficient (and efficiently invertible)
injective mapping, with map(Fp′) ⊆ Fp \ {0, 1}.

• The sender (Alice) and receiver (Bob) have respective input sets A =
{a1, a2, . . . , an} ⊂ Fp′ and B = {b1, b2, . . . , bn} ⊂ Fp′ .

• A subfield ring-OLE in the ringRq over the subringRp.
PROTOCOL:

1. (Setting up the correlation) Alice and Bob encode their sets to pA = c · (X − 1) ·∏n
i=1(X − map(ai)) with c = −(

∏n
i=1(−map(ai)))

−1 (note that this guarantees
pA(0) = 1 and pA(1) = 0) and pB =

∏n
i=1(X − map(bi)) respectively. Alice and

Bob invoke FsOLE to generate a subfield ring-OLE correlation over Rp,Rq : Alice
receives (a, sA) ∈ Rp ×Rq and Bob receives (b, sB) ∈ R2

q such that sA + sB = ab.

2. (Broadcasting the client set encoding) Alice computes and sends tA = a− pA to
Bob.

3. (Server-to-client message) Bob sets s′B ← sB − tAb. Then, Bob decomposes b as
b = b0 + b1 ·Xn (where b0, b1 are degree-n polynomials), and sets s′B ← sB − tAb.
He sends b1 to Alice.

4. (Checking pA) Alice computes s′A ← sA − pAb1 ·Xn. Alice sends y ← s′A(0) to
Bob. If y ̸= b0(0)− s′B(0), Bob aborts. Else, Bob picks a random degree-n polynomial
b′0 overRq and sends tB ← s′B + pBb

′
0 to Alice.

5. (Output)Alice sets u← tB−pAb1 ·Xn+sA; note that u = pAb0+pBb
′
0. If u(1) = 0,

Alice aborts; otherwise, Alice computes the set I = {x ∈ A | u(map(x)) = 0} and
outputs I .

• a single degree-n polynomial interpolation, one FFT over a polynomial ring with degree-2n
polynomials, and 3 multiplications of degree-n polynomials for the receiver, and

• a single degree-n polynomial interpolation, one FFT as above, 2 multiplications of degree-n
polynomials, and a single n-multipoint polynomial evaluation for the sender.

Furthermore, both polynomial interpolations only have to be performed over a field F, of size |F| ≈ 2ℓ

where ℓ is the bit size of the set items (e.g. 32 or 64 bits), and the multipoint evaluation is over a field
of size κ+2 log n bits. This stands in stark contrasts with previous state of the art protocols [PRT+19]
that relied on polynomial interpolation (on top of using the ROM), where the interpolations and
multipoint evaluations had to be performed over a very large field F of size |F| ≈ 2400. By using a
cyclotomic ring, the FFTs and polynomial multiplications are much faster than the interpolations. On
Section 3.2, we compare our protocol to the current fastest maliciously secure PSI protocols [PRT+20;
RT21b; RS21].

Chapter 4
Efficient Designated-Verifier
Zero-Knowledge Proofs

In this chapter, we present two additional contributions to the field of designated-verifier zero-
knowledge proofs (ZKPs). First, we introduce a privately verifiable ZKP for circuit satisfiability that
leverages vector OLE to achieve sublinear communication while maintaining competitive efficiency.
This contribution is detailed in Section 4.1 and is presented in its entirety in [BCC+24]. Second, we
propose a novel and efficient designated-verifier non-interactive ZKP (DV-NIZK) based on public-key
PCF-based Oblivious Transfer (OT). This work is discussed in Section 4.2 and is fully elaborated
in [BCM+24].

Contents
4.1 Sublinear PCG-based ZKP for General Circuits 71

4.1.1 Motivation and Related Works . 72
4.1.2 Detailed Contributions . 73
4.1.3 Technical Overview . 75
4.1.4 Generic Compiler of ZK Proofs from SIMD Circuits to Arbitrary Circuits . 79
4.1.5 Generic ZK for Limited-Memory . 83
4.1.6 Sublinear Designated-Verifier ZK . 84

4.2 DV-NIZK from Public-Key PCF-based OT 88
4.2.1 Motivations and Related Works . 88
4.2.2 Detailed Contributions . 90
4.2.3 Construction of Reusable DV-NIZK . 91
4.2.4 Efficient Public-Key PCF-based OT . 97
4.2.5 Concrete Instantiation of DV-NIZK . 104

4.1 Sublinear PCG-based ZKP for General Circuits
In this section, we present our contribution to constructing a sublinear zero-knowledge proof (ZKP)
for circuit satisfiability using PCG-based VOLE. In Section 4.1.4, we introduce our compiler, which
transforms ZKPs for SIMD circuits into ZKPs for arbitrary circuits. Building on this, in Section 4.1.6,
we provide an instantiation of our compiler using PCG-based VOLE ZKP, achieving sublinear

72 Efficient Designated-Verifier Zero-Knowledge Proofs

communication while maintaining competitive efficiency. Finally, in Section 4.1.5, we present a
scalable variant of our compiler, designed specifically for scenarios where the prover has limited
memory.

4.1.1 Motivation and Related Works

Assume that the verification of a statement is represented as a public circuit C : {0, 1}n → {0, 1}.
A zero-knowledge proof (ZKP) allows a prover to convince a verifier that it possesses a witness w
such that C(w) = 0, without the verifier learning any information beyond the circuit output. The
commit-and-prove zero-knowledge (CP-ZK) paradigm is among the most flexible and modular design
mechanisms for constructing ZKP. For instance, a CP-SNARK allows a prover to commit to a batch of
secrets via a commitment scheme (e.g. vector commitment or polynomial commitment), then prove
relations between the committed values in ZK [CFQ19; CFF+21; Lip16]. A small communication
footprint is achieved when the commitment is compressing and the proof is succinct. On the
other hand, schemes like VOLE-based ZKPs [BMR+21; WYK+21; YSW+21; DIO20] rely on efficient
interactive commitment scheme that separately commits to wire values in the circuit, then prove the
consistency between committed wire values with constant overhead. Though general VOLE-ZKs
incur communication complexity linear to the circuit size, they achieve high throughput owing to
the lightweight operations.

Generally, CP-ZK proof systems with sublinear communication involve two components after
the batch commitment of witnesses: (1) Hadamard product of committed vectors, (2) equality of
individual wires across different committed vectors. The former is used to demonstrate the correct
computation of multiplication gates and the latter is used to show that the committed wire values
are consistent with the circuit topology.

From SIMD-ZK to general ZK. From another perspective, the above approach can be viewed as
a conversion from commit-and-prove SIMD-ZK to general ZK. Define (B, C)-SIMD circuit which
contains B identical components of the circuit C. A SIMD-ZK proves that for input witnesses
(w1, . . . ,wB), C(wi) = 0 for i ∈ [B]. By exploiting the fact that operations are identical across B
components, SIMD-ZK schemes typically utilize vector commitments and batch proofs to achieve
communication sublinear inB ·|C|. In more detail, denote by JwK a commitment to a vectorw. Define
a witness matrixW = (w1∥ . . . ∥wB). Instead of viewing the ith column as the witness to the ith
evaluation of C, a prover commits to each row vector and lets the verifier obtain (Jw1K, . . . , Jw|C|K).
In this way, for any gate (α, β, γ, ⋄) in C and ⋄ ∈ {Add,Mult}, the prover only needs to prove that
wγ = wα ⋄wβ . ZKP schemes achieve O(|C|) proof size if both the vector commitment and batch
proof of additions and multiplications incur constant size.

Most of priors work on different proof systems indeed take this approach by first implementing
batch commitment and proof of multiplication gates, which are followed by a wiring consistency
check [GWC19; CHM+20; CFQ19; CFF+21; AHI+17; WYY+22; YW22]. However, they take divergent
paths to tackle the latter problem. A popular approach is to compile the circuit into an algebraic
format via a constraint system, e.g. rank-1 constraint system (R1CS) [GGP+13]. Define z := (1,x,w)
in which x and w are the public and private inputs of the circuit. Denote (L,R,O) as the matrices
that represent the map from z to the vectors of the left, right and output wires of multiplication
gates a, b, c. Then the relation a ∗ b− c = 0 can be expressed as (L · z) ∗ (R · z)− (O · z) = 0.
In this way, the ZKP is reduced to proving matrix-vector products on committed values. On the
other hand, some ZKPs like [WYY+22] and [YW22] proceed differently: they individually prove that
wα[i] = wβ[j] for any i, j ∈ [B]. Although this approach yields better scalability for the ZKP, it
results in worse communication complexity, usually with a B2 factor.

4.1 Sublinear PCG-based ZKP for General Circuits 73

An interesting question is whether we can design a generic compiler that translates any commit-
and-prove SIMD-ZK (CP-SIMD-ZK) into a general CP-ZK with sublinear communication. It would
facilitate the design of communication-efficient ZKP because it allows the focus to be shifted to the
design of SIMD-ZK primitives, which are generally easier than general-purpose ZKP.

From SIMD-ZK to scalable ZK. It is common for ZKPs to trade off scalability against succinctness.
On the one hand, although zk-SNARKs generate proofs of constant size or size sublinear to |C|, their
memory overhead is at least O(|C|). The constant factor is large when public-key operations are
involved. This prevents them from being applied to large statements: prior benchmarks only focus
on statements represented by less than 225 constraints [CBB+23]. Efforts are made to distribute the
zk-SNARK proof generation among a set of provers [WZC+18; OB22; SVV16; BG22], however, the
overall computational and memory overhead is still prohibitive. They either need to disclose secret
input to all provers, or only aim to delegate computation to more powerful workers but not to reduce
the computational cost of them. Another line of work focuses on recursive SNARKs [KST22; KS22;
BGH19] that allow a statement that can be divided into multiple steps to be proven step-by-step, but
they require the statement to be structured, i.e., each step is represented by identical constraints. On
the other hand, interactive ZKPs such as VOLE-ZK [BMR+21; WYK+21; YSW+21; DIO20] achieve
high scalability by “streaming” the circuit evaluation. They evaluate the circuit gate-by-gate and
only incur memory overhead linear in the current gates that are evaluated. Neither the witness nor
the circuit structure for future gates are required to be known in advance. Hence these types of ZKPs
scale to large circuits with billions of gates. However, their drawback is the O(|C|) communication
complexity and lack of public verifiability.

Naturally, it would be interesting to study how to achieve scalability and succinctness at the
same time. Specifically, can we obtain efficient ZKPs with proof size sublinear to the circuit size,
without the memory overhead being lower bounded by the circuit size?

4.1.2 Detailed Contributions

In this work, we start from SIMD-ZK schemes and aim to obtain efficient general ZK and scalable
ZK. We first extend the SIMD-ZK functionality by adding a proof of linear map, which is easily
realized by most SIMD-ZK schemes. Then we design two compilers. The first one converts a wide
range of extended SIMD-ZK to general ZK, and the second one further converts it to scalable ZK for
memory-constrained provers to prove large statements. For both constructions, we also demonstrate
the generality of the compilers, i.e., our methods promote any SIMD-ZK to general and possibly
scalable ZK so that attention can be paid only to the design of the efficient SIMD-ZK, instead of more
complicated generic primitives.

Extended SIMD-ZK. We propose a functionality that extends the SIMD-ZK functionality FSIMDZK

and denote it as FeSIMDZK. In addition to the subroutines commit, open and prove that are commonly
supported by SIMD-ZK schemes, it also contains a proof of linear map that checks the relation
x = My for committed vectors (x,y). The functionality FeSIMDZK is the fundamental building
block of our construction to compile SIMD-ZK to general ZK. Based on the extended SIMD-ZK, we
design a SIMD compiler that allows a wide spectrum of SIMD-ZK to work for general circuits. To do
so, it first converts the general circuit into a SIMD circuit by ignoring the circuit connectivity, and
proves its satisfiability via a SIMD proof. This only utilizes the commit, open and prove thus can be
handled by the underlying SIMD-ZK. Then the compiler represents the wiring as a linear mapping of
committed wire values, and proves the wiring consistency by the proof of linear map from FeSIMDZK.

74 Efficient Designated-Verifier Zero-Knowledge Proofs

ZKP for large statements. Except for VOLE-based ZKP, most practical ZKPs incur large RAM con-
sumption, often linear to the circuit size. To relax the memory overhead, we propose a framework
for memory bounded provers to prove the correctness of large statements. It also relies on FeSIMDZK

and can easily achieve sublinear communication complexity for arbitrary large circuits by properly
instantiating the underlying SIMD-ZK. Particularly, it utilizes the proving technique in our SIMD
compiler to evaluate a circuit segment by segment and prove the connectivity of wires between
these segments. Similar to the current scalable interactive ZK, it does not require the whole circuit
structure or the witness to be known in advance, hence allowing streaming.

log2B
Communication (MB) Running time (s)
Setup Online Setup Online

9 4.6 60.13 6.84 377.3
10 4.6 30.54 14.7 380.7
11 4.6 15.78 38.72 407.83
12 6.7 8.82 144.75 438.19

QS [YSW+21] 1087.23 185.43

Table 4.1: Performance of AntMan++ with variable batch size. Benchmarked with 1 thread, 50 Mbps
bandwidth and circuit size C = 227.

Scheme-Threads Bandwidth (Mbps)

10 25 50 100

AM-1 461.71 449.75 446.55 444.17
AM-4 292.61 280.53 277.43 275.28
AM-8 263.55 249.89 248.24 246.07

QS-8 [YSW+21] 900.47 361.29 181.63 91.9

Table 4.2: Performance of AntMan++ with variable threads and bandwidth. Benchmarked with
circuit size C = 227 and batch size B = 211. Numbers are in seconds.
Instantiation for VOLE-based proof systems. To demonstrate the generality of our compiler, we
describe and analyze the detailed instantiation of our compiler with various CP-ZK that inherently
work well for SIMD circuits, i.e., VOLE-based ZK [WYY+22]. We show how to adapt these work for
general ZK and scalable ZK by merely satisfying the minimum requirement, that is, realizing the
SIMD-ZK functionality. We emphasize that the transformation may affect the security guarantee of
the underlying SIMD-ZK, and extra security analysis will be provided in that case.

Furthermore, we implement the SIMD compiler and evaluate the compilation of a VOLE-based
ZK [WYY+22] that is previously designed for SIMD circuits. For a circuit of size |C| = 227, it shows up
to 83.6× improvement on communication, compared to the general VOLE-ZK Quicksilver [YSW+21].
In terms of running time, it is 70% faster when bandwidth is 10Mbps and 30% faster when bandwidth
increases to 25Mbps using the same set of parameters. Its running time can be further improved if
sacrificing communication by reducing batch size as shown in Table 4.2,Table 4.1.

Related Work.
Previous work on complexity-preserving zero-knowledge proofs study efficient proof generation

with constrained space or time budget [BHR+20; BHR+21; EFK+20; HR18; BC12; BCC+13]. Bootle et
al. propose elastic SNARKs that can either achieve linear time and space complexity, or reduce the

4.1 Sublinear PCG-based ZKP for General Circuits 75

RAM consumption to O(logC) with O(C log2C) computational complexity [BCH+22]. Assume an
NP relation that can be verified in time T and space S by a RAM program, Bangalore et al. [BBH+22]
propose a public-coin ZKP based on collision-resistant hash functions that allow the prover to run in
time Õ(T) and space Õ(S), with proof size Õ(T/S). Their space-preserving ZKP is converted from
Ligero [AHI+17].

Recent recursive zk-SNARK and incremental verifiable computation (IVC) propose succinct
arguments for composed circuits, which can be evaluated step by step [KST22; KS22; STW23; BGH19;
BCL+21]. These techniques increase the scalability of the prover, who separately generates proof for
each step while simultaneously proves its consistency with all previous steps without going over
the history data. They can potentially support streaming proofs in a way that the input and witness
for future steps are not necessarily known until those steps are reached. However, many of them
only support structured circuit which are divided into a sequence of components that share the same
structure. More advanced IVCs cross this barrier, however, they reveal the output of each step and
thus do not provide the zero-knowledge guarantee when they are treated as general ZK [KST22;
KS22].

Notation and Functionalities.
For a vector x ∈ FB we define its i-th coordinate by xi, and a vector x′ := (f(0),x) ∈ FB+1 as

the concatenation of a value f(0) ∈ F and the vector x. Given distribution ensembles {Xn}, {Yn},
we write Xn ≈ Yn to denote that Xn is computationally indistinguishable to Yn. negl(λ) is defined
as a negligible function such that negl(λ) = o(λ−c) for any positive constant c. A circuit C over a
field F consists of input, output, addition and multiplication gates, where input gates use circuit-input
wires as their output wires and output gates use circuit-output wires as their input wires. |C| = C
is the number of multiplication gates in the circuit C. Define (B, C)-SIMD circuit as a circuit that
contains B copies of C.

We prove the security in the UC model using two ideal functionalities of interactive ZKP FZK

and Vector OLE FVOLE which are defined in Chapter 2.

Lemma 4.1.1 (Schwartz–Zippel). Let P ∈ F[x1, x2, . . . , xn] be a non-zero polynomial of total degree
d over an field F. Let S be a finite subset of F and let r1, . . . , rn be selected at random independently
and uniformly from S. Then Pr[P (r1, r2, . . . , rn) = 0] ≤ d/|S|.

4.1.3 Technical Overview

From SIMD to General Circuit in ZK

Denote the prover as P and verifier as V. Define (B, C)-SIMD circuit as B identical repetitions of
a circuit C with size |C| = C . SIMD-ZK is designed for such circuits. First, we would like to focus
on converting SIMD-ZK to general ZK that works for arbitrary circuits. The functionality of ZKP
for SIMD circuits is shown in Figure 4.1. P first groups and commits to the vectors of witnesses.
Then it uses the underlying ZKP to prove the relation of committed values by directly operating
on commitments. Since elements in each vector are committed in a batch, the operations on the
commitment apply to all of the committed elements.

The common framework to conduct the transformation from SIMD-ZK to general ZK is decom-
posing a circuit into a batch of SIMDs and using a wire consistency check on top of SIMD-ZK to
check the consistency between SIMDs. As in AntMan [WYY+22], one can first arrange all gates
in batches, commit to their input and output wire values, then utilize a SIMD-ZK to prove that all
batches of gates are computed correctly. Then an extra protocol is invoked to prove the consistency of

76 Efficient Designated-Verifier Zero-Knowledge Proofs

Figure 4.1: Functionality of SIMD ZK FSIMDZK

PUBLIC PARAMETER: Define B to be the batch size and τmax to be the maximum time that a commit-
ment can be used in the proof.

Commit: Upon receiving input (Commit,w ∈ FB) from P and (Commit) from V, pick a tag JwK and
store (JwK,w, ctrw = 0) in the memory. Return JwK to both parties.

OPEN: Upon receiving (Open, JwK), if a tuple (JwK,w) was previously stored, output (JwK,w) to V;
otherwise abort.

PROVE: Upon receiving (Prove, C, Jw1K, . . . , JwmK), where the circuit C : {0, 1}m → {0, 1}, fetch
wi from the memory, for i ∈ [m]. If for any wi that JwiK does not exist or its counter ctrwi ≥ τmax,
abort. Check C(w1[i], . . . ,wm[i]) = 0 for all i ∈ [B]. If any check fails, abort; otherwise, return Pass.
For i ∈ [m], set ctrwi

= ctrwi
+ 1.

each individual wire value that is repeatedly packed in multiple commitments, e.g., for batched wire
valuesw1,w2 ∈ FB and wire indices i, j ∈ [B], it aims to check whether they satisfyw1[i] = w2[j].
AntMan requires O(B3) complexity for checking all combinations of (i, j) ∈ [B]× [B], which leads
to a total communication complexity of O(B3 + C/B). This translates to a O(C3/4) cost when
setting B = C1/4.
A better wire consistency check. We follow an idea similar to the above but manage to improve the
complexity fromO(C3/4) toO(C1/2). We ignore the wiring of the circuit and pack the multiplication
gates in blocks of size B, which results in C/B batches. The SIMD proof is invoked to first commit
to the input and output wires of the packed multiplication gates, then prove the SIMD circuit
satisfiability. They totally incur communication complexity O(C/B). Then, we manage to perform
the wire consistency check with cost O(B) rather than O(B3).

Instead of considering the wire consistency among each pair of commitments that contain values
from the same wire as done in AntMan, we consider how they are all consistent with a global vector
w that contains all wire values in the circuit. Taking the left input wire of all multiplication gates
as an example. Define a circuit C that has a total of Bm wire values and Bn multiplication gates.
Assume global wire valuesw ∈ FBm and the values of left input wires across all multiplication gates
l ∈ FBn. For any i ∈ [Bn], the left wire of the i-th multiplication gate must be associated a wire index
αi ∈ [Bm] such that l[i] = w[αi]. Alternatively, one can define a mapping matrix L ∈ {0, 1}Bn×Bm

such that the i-th row Li is all-zero except at the entry Li[αi]. In this way, the wire consistency
check boils down to check l = Lw, where L is public and parties have commitments {JliK}i∈[n]
and {JwiK}i∈[m]. In the context of SIMD-ZK protocols, values in l and w are batch-committed,
meaning that operations on them are applied to every element in the vector. As a result, it is not
straightforward to use SIMD-ZK to prove wire consistency which intuitively involves operations for
separate elements.

We sketch our idea below. First, let V send a challenge vector r̂ ∈ FBn and convert the check of
l

?
= Lw to the check of r̂⊺l ?

= r̂⊺Lw. This reduces the proof of a matrix-vector multiplication to a
proof of two inner products, with an increase in soundness error depending on the distribution of
r̂. To simplify the notation, we define a public vector v⊺ = r̂⊺L, then rewrite the above relation as
r̂⊺l

?
= v⊺w. If we define a circuit C : F2n+2m+1 → F such that

C(r1, . . . , rn, l1, . . . , ln, v1, . . . , vm, w1, . . . , wm, q) :
∑
i∈[n]

ri · li −
∑
j∈[m]

vj · wj − q,

then P can prove the above statement by: 1) Divide each of the vectors in (r̂, l,v,w) into length-B

4.1 Sublinear PCG-based ZKP for General Circuits 77

segments. Compute and commit to q :=
∑

i∈[n] r̂i ∗ li−
∑

j∈[m] vj ∗wj ∈ FB . Prove the consistency
between (r̂, l,v,w, q) by using a SIMD-ZK composed of B evaluations of the circuit C. 2) prove
that

∑
i q[i] = 0. This is not obvious, as it involves the computation of the sum of values in one

commitment. A naive way is for P to open the commitment to q, but it compromises the zero-
knowledge requirements because q is the linear combination of private circuit wire values. To tackle
the problem, P instead commits to a uniform vector r̃ ∈ FB under the constraint that

∑
i∈[B] r̃[i] = 0.

It should be done before V samples r̂ (else P can break soundness). After P commits to the mask
vector, V sends the challenge r̂ and the new SIMD circuit is defined to be

C′(r̂1, . . . , r̂n, l1, . . . , ln, v1, . . . , vm, w1, . . . , wm, q, r̃)

=
∑
i∈[n]

r̂i · li −
∑
j∈[m]

vj · wj − q − r̃

P computes and commits to q ∈ FB such that

q =
∑
i∈[n]

r̂ ∗ li −
∑
j∈[m]

vj ∗ wj − r̃.

The parties can now use the SIMD-ZK to prove B number of instances of C′ with committed inputs
Jr̂1K, . . . , Jr̂nK, Jl1K, . . . , JlnK, Jv1K, . . . , JvmK, Jw1K, . . . , JwmK, JqK and Jr̃K. Finally, the proof of∑

i q[i] = 0 is specific to the underlying commitment schemes. The naive way is to let P fully open
q to V who verifies its sum locally. This would generally require O(B) communication complexity.

Soundness comes from the randomness of the challenge vector r that is sampled after P commits
to r̃. Assume that F is an exponentially large field and a cheating prover commits to (l,w) such that
l−Lw ̸= 0Bn. By Schwarz-Zippel, the probability that the erroneous values happen to be corrected
by r̂ during the check of

∑
i q[i]

?
= 0 where q := r̂⊺l− r̂⊺Lw is 1/|F|, which is negligible.

Figure 4.2: Functionality of extended SIMD zero-knowledge FeSIMDZK

Public parameter: batch size B.
FeSIMDZK supports all that FSIMDZK supports and the following instruction.

Linear map: Upon receiving input (LinearMap, Jx1K, . . . , JxnK, Jy1K, . . . , JynK,M), check if tuple
(JxiK,xi) and (JyiK,yi) exists for i ∈ [n] and that x = My. If any check fails, abort; otherwise, return
Pass.

Plugging in the protocol. For a general circuit with a total of |w| = Bm wire values and C = Bn
multiplication gates, the above approach leads to a zero-knowledge proof of linear map that can be
instantiated by any SIMD-ZK. The actual communication complexity depends on the cost of proving
the inner product argument by the underlying SIMD-ZK, plus the opening cost of the commitment
scheme. Let (l, r,o) ∈ FnB be the batched wire values of left, right and output of multiplication
gates in the circuit. The wire consistency can be proven by checking (l ?

= Lw, r
?
= Rw,o

?
= Ow),

where (L,R,O) ∈ FnB×mB are public maps that describe the circuit connectivity. Furthermore, the
SIMD-ZK protocol handles the rest of the multiplicative relation check o

?
= l ∗ r. This scheme is

captured in the extended SIMD-ZK functionality FeSIMDZK shown in Figure 4.2. Compared to the
common SIMD-ZK functionality shown in Figure 4.1, it supports the proof of linear map between
committed vectors. Based on this extended SIMD-ZK, we propose a compiler that compiles any SIMD-
ZK into general ZK. By plugging this compiler to AntMan [WYY+22], it improves its communication
complexity from O(C3/4) to O(C1/2).

78 Efficient Designated-Verifier Zero-Knowledge Proofs

Memory constrained prover. The above construction can be viewed as a compiler that enables a
SIMD-ZK to handle arbitrary circuits C, where all wire values fit in a vectorw of sizeO(C). Assume
the linear mapping matrices use succinct representation, the proof requires memory overhead O(C),
which upper bounds the largest circuit that the scheme can prove. We propose a second compiler
that further extends the previous idea to the streaming setting, in which the memory overhead is
proportional to the plaintext evaluation of the circuit. Furthermore, the whole circuit structure and
the witnesses are not required to be known until they are reached. Instead, P proves the circuit
segment-by-segment and only needs to evaluate the current and the previous one at a time: the
circuit C is split into segments C = (C1, . . . , Cn′). For any consecutive segments Cj and Cj+1, let
(wj , lj , rj ,oj) and (wj+1, lj+1, rj+1,oj+1) be the witness and the input and output wire values
of multiplication gates for each segment. P first uses a commit-and-prove SIMD-ZK to prove the
internal satisfiability of Cj including the linear and multiplicative relations of (wj , lj , rj ,oj). Then P
proves that the output wires of Cj correctly link to some input wires of Cj+1. Namely, it additionally
invokes the check of linear map to prove Mwj = w̃j+1, in which M is a map that indicates the
connectivity between Cj and Cj+1 and w̃j+1 are the input wire values of Cj+1. After this, P and V
discard everything for segment Cj and carry on with the check of internal circuit satisfiability of
Cj+1. The above step incurs memory overheadO(|wj |+ |w̃j+1|). Based on this framework, P is able
to prove the satisfiability of a large circuit by separately evaluating a sequence of smaller circuits.

Compiling AntMan SIMD-ZK. The AntMan SIMD-ZK protocol consists of the following key
components: 1) a constant-size additive-homomorphic polynomial commitment scheme, 2) a proof
of multiplicative relation on committed polynomials, i.e. prove that f0(·) = f1(·) · f2(·). and 3) a
proof of degree reduction, i.e. for two polynomials (f(·), f̂(·)) with degrees d1 < d2, f(i) = f̂(i) for
i ∈ [d1 + 1]. We write JfK for a commitment to the polynomial f(·). The AntMan protocol realizes
FSIMDZK as follows:

1. For each batch of B private inputs wα ∈ FB , P computes a degree-(B − 1) polynomial fα
such that fα(i) = wα[i]. P commits to fα so that P and V obtain JfαK.

2. The parties process the circuit in topological order. For any batch of k addition gates with
commitments to input wires (JfαK, JfβK), P and V locally computes the commitment to
output wires by JfγK = JfαK + JfβK. For multiplication gates with input commitments
JfαK and JfβK, P computes wγ = wα ∗wα and a degree-(B − 1) polynomial fγ such that
fγ(i) = wγ [i], i ∈ [B]. P also computes f̂γ(·) = fα(·) · fβ(·). P commits to them by
generating JfγK and Jf̂γK.

3. For eachmultiplication gateswith input and outputwires (α,β,γ),P proves that (JfαK, JfβK, Jf̂γK)
is a multiplication triple and f̂γ(i) = fγ(i) for i ∈ [B].

4. When a batch of k output wires α, P opens the commitment to fα, from which V reconstructs
wα.

The overhead of AntMan SIMD-ZK lies in the commitment of batch circuit intermediate wire values
at Step 2, which takes O(C) for a (B, C)-SIMD circuit. The proof of multiplication and degree
reduction only incurs O(B) with random linear combination.

When applying the SIMD compiler to the AntMan SIMD-ZK, it takes O(C/B) to prove all
multiplicative relations for a general circuit of size C . Namely, it checks C multiplication triples
(l, r,o) via SIMD-ZK. Additionally, it invokes the proof of linear map to check the wire consistency
between (l, r,o) andw, which contains intermediate wire values in the circuit. This procedure incurs
O(B) communication overhead at the final commitment opening. Hence, it takes O(C/B +B) ≥

4.1 Sublinear PCG-based ZKP for General Circuits 79

Figure 4.3: The protocol for extended SIMD ZK from SIMD ZK ΠeSIMDZK

INPUTS: The prover P and verifier V hold a public matrixM ∈ FBn×Bk for some integers n and k.
Commitments JxK and JyK are public, where x ∈ FBn and y ∈ FBk .
PROTOCOL:

1. P uniformly samples a vector r̃ ∈ FB such that
∑B

i=1 r̃[i] = 0. Then FSIMDZK is invoked to obtain
its commitment Jr̃K.

2. V uniformly samples a vector r̂ ∈ FBn and sends it to P . Everyone computes v = r̂TM ∈ FBk.
Then for i ∈ [k], FSIMDZK is invoked to construct JviK, where vi is the i-th B-sized vector of v. In
the same way, everyone can have access to {Jr̂iK}i∈[n].

3. P computes q ∈ FB , such that q[i] =
∑n

j=1 r̂j [i]xj [i]−
∑k

j=1 vj [i]yj [i]+r̃[i]. P invokesFSIMDZK

to obtain JqK.

4. Define circuit

CLin(a1, . . . , an, b1, . . . , bn, c1, . . . , ck, d1, . . . , dk, e, f)

:=

n∑
i=1

ai · bi −
k∑

i=1

ci · di + e− f,

then call FSIMDZK.Prove(CLin, Jr̂1K, . . . , Jr̂nK, Jx1K, . . . , JxnK,
Jv1K, . . . , JvkK, Jy1K, . . . , JykK, Jr̃K, JqK).

5. V sends (Open, JqK) to FSIMDZK, which returns q to V; V checks
∑B

i=1 q[i] = 0 and aborts if the
check fails.

O(C1/2) in total to prove the satisfiability of arbitrary circuits. This protocol is referred as AntMan++.
We implemented the AntMan++ and evaluate its performance on proving general circuits of size up
to C = 227. It is compared with the prior practical VOLE-based ZK QuickSilver [YSW+21], which
requires O(C) communication overhead. More details are shown in Section 4.1.6.

4.1.4 Generic Compiler of ZK Proofs from SIMD Circuits to Arbi-
trary Circuits

In this section, we first present a construction for extended SIMD-ZK functionality FeSIMDZK which
supports the proof of linear map, in addition to the normal SIMD-ZK functionality FSIMDZK. Based
on the extended SIMD-ZK, we describe our compiler that enables a SIMD-ZK scheme to work for
general circuits. At last, we present a framework that allows SIMD-ZK schemes to prove large
statements with small memory footprints.

Extended SIMD-ZK

The protocol for extended SIMD-ZK is shown in Figure 4.3, which realizes the functionalityFeSIMDZK.
It is based on the FSIMDZK functionality to perform the committing and opening of batched wire
values, as well as prove the element-wise multiplicative relations between these batches. It takes input
a public matrix M ∈ FBn×Bk and two vectors x = (x1, . . . ,xn) ∈ FBn and y = (y1, . . . ,yk) ∈
FBk from P, outputs 1-bit information to V indicating whether x = My. Essentially, it is a proof of
linear map. The first step is to reduce the proof of linear map to a proof of inner products, which is
achieved by a random linear combination: V uniformly samples r̂ ∈ FBn and converts the check of

80 Efficient Designated-Verifier Zero-Knowledge Proofs

x
?
= My into r̂⊺x ?

= v⊺y, where v⊺ = r̂⊺M . After dividing these vectors into length-B segments,
P and V invoke the FSIMDZK functionality of batch size B. P inputs q and proves the correctness of
q =

∑n
i=1 r̂i ∗ xi −

∑k
j=1 vi ∗ yi ∈ FB . Eventually it opens the commitment to q and let V check∑B

i=1 q[i]
?
= 0. To ensure the privacy of P, it needs to make sure that only opened commitment to q

does not reveal information of x and y. It does so by the random mask r̃. The impact of this mask
on soundness is negligible since it is committed before r̂ is sampled.

In terms of the cost, the protocol ΠeSIMDZK takes input k + n vector commitments. During the
protocol execution, it additionally commits to k + n + 1 size-B vectors. If element-wise product
between a public vector and a committed vector is supported by the underlyingFSIMDZK, the number
of commitments is reduced to 1 size-B vector commitment. Parties invoke the Prove procedure from
FSIMDZK to prove a (B,n+ k)-SIMD circuit. P also opens a size-B vector to V with cost at most
O(B). The cost is reduced if the underlying SIMD-ZK protocol provides an easier way to prove∑B

i=1 q[i] = 0 for a committed vector q without opening the commitment.

Theorem4.1.1. ProtocolΠeSIMDZK (Figure 4.3) securely realizes the FunctionalityFeSIMDZK (Figure 4.2)
in the FSIMDZK-hybrid model, with soundness error |F|−1.

Proof. We first consider the case of a malicious prover and then the case of a malicious verifier. In
each case, we construct a PPT simulator S given access to functionalityFeSIMDZK, and running a PPT
adversary A as a subroutine while emulating FSIMDZK for A. We show that no PPT environment Z
can distinguish the real-world execution from the ideal-world execution.

Malicious prover. The simulator S simulates the view of adversary A for the protocol execution of
ΠeSIMDZK as follows:

1. By emulating the (Commit) command of FSIMDZK, S receives r̃ from A and sends a handler
Jr̃K to A.

2. S uniformly samples r̂ ∈ FBn and sends to A. For i ∈ [k], after receiving (Commit,vi) from
A, S sends a handler JviK to A. Similarly, S sends Jr̂iK to A for i ∈ [n].

3. After receiving (Commit, q) from A, S emulates FSIMDZK by sending A another handler JqK.

4. S receives (Prove, C, τ1, . . . , τ2n+2k+2) from A, and then checks whether τi for all i ∈ [2n+
2k + 2] match their corresponding tags. For i ∈ [B], S checks whether

∑n
j=1 r̂j [i]xj [i] −∑k

j=1 vj [i]yj [i] + r̃[i]− q[i] equals to 0 or not. If any check fails, S aborts; otherwise sends
Pass to A.

5. S emulates the (Open) command of FSIMDZK and receives a handler τ from A. If τ does not
match JqK or the vector q previously sent by A does not satisfy

∑B
i=1 q[i] = 0, S aborts.

Define E to be the event that a cheating prover A successfully convinces V in the real world.
This happens when r accidentally corrects the wrong input of A. Define z = My and

f(x1, . . . , xBn) =
Bn∑
i=1

xi(x[i]− z[i]) +
B∑
i=1

r̃[i].

With fixed x, z, r̃ and uniformly sampled r̂, we have

Pr [E|x ̸= My] = Pr [f(r̂) = 0|x ̸= My] = |F|−1.

4.1 Sublinear PCG-based ZKP for General Circuits 81

since f(x1, . . . , xBn) is a Bn-variate degree-1 polynomial. Hence we conclude that A cannot
distinguish between the real and ideal world except with probability |F|−1.

Malicious verifier. Similarly in this case, S interacts with A as follows:

1. To emulate the (Commit) command, S sends a handler Jr̃K to A.

2. S recieves r̂ and (Commit,vi) from A for i ∈ [k]. Then S emulates FSIMDZK by sending A a
handler JviK for i ∈ [k]. In the same way, S sends A handlers {Jr̂iK}i∈[n].

3. Then, S plays the role of FSIMDZK and sends a handler JqK to A.

4. S receives (Prove, C, τ1, . . . , τ2n+2k+2) from A and checks whether {τi}i∈[2n+2k+2] match
their corresponding tags. Then S queries FeSIMDZK. If check fails or FeSIMDZK aborts, S
aborts; otherwise sends Pass to A.

5. By emulating the (Open) command of FSIMDZK, S uniformly samples a vector q ∈ FB such
that

∑B
i=1 q[i] = 0 and sends q to A.

The only difference between reality and the ideal world is the method of calculating vector q.
Following the constraint

∑B
i=1 q[i] = 0, S uniformly samples vector q. While in reality, each entry

of q is masked by vector r̃ chosen by P . As a result, in both worlds, all entries except one of q are
information-theoretic secure, so no one can distinguish one from another.

Overall, any PPT environment Z cannot distinguish between the real-world execution and
ideal-world execution, which completes the proof.

Compiling Extended SIMD-ZK

The general approach to compiling a SIMD protocol into a generic protocol is to supplement it with
additional proof of wiring consistency. Namely, denotew as a vector that includes all the wire values
in a circuit, then any input wire of a multiplication gate can be represented as the linear combination
of a series of values in w, who are the wire values that connect from the circuit inputs or the output
of other gates. This relation can be generally represented as a linear map M between a vector of
wire values x, and w, which should satisfy x = Mw. As shown in Figure 4.4, along with the vector
w, P also commits to (l, r,o) which are the batches of input and output wire values of multiplication
gates. Showing that o = l ∗ r is enough to prove that all multiplication gates are computed correctly.
Additionally, P also proves the correctness of (l = Lw, r = Rw,o = Ow), in which (L,R,O)
are the linear maps that defines the routing of wires that connect to the input and output wires
of multiplication gates. Additionally, the proof of 0 = Aw shows the correct computation of all
addition gates.

To handle a general circuit C, our compiler fully depends on the extended SIMD-ZK functionality
FeSIMDZK. Regarding the cost analysis, P commits to a total of k + 3n2 size-B vectors to V. They
invoke the proof of linear map for 4 times to prove the wiring consistency, and the proof of element-
wise multiplication to prove the correctness of n2 batches of multiplication gates. An optimization
to reduce the cost for the proof of linear map is to combine the 4 of them into 1. Namely, define w′

to be the wire values excluding the input and output wires of multiplication gates. Construct the
witness vector w = (w′∥l∥r∥o) and prove the wiring consistency by proving 0 = A′w, in which
A′ ∈ FK×K is a map that describes the circuit wire connectivity.

82 Efficient Designated-Verifier Zero-Knowledge Proofs

Figure 4.4: Generic ZK in the FeSIMDZK hybrid Πcompiler

INPUTS: The prover P and verifier V hold an arbitrary circuit C over a large field F, where C contains
N1 = Bn1 addition gates, N2 = Bn2 multiplication gates and K = Bk wires for some n1, n2 and k.

PROTOCOL:

1. Set c = 1. For each gate in the form (i, α, β, γ, T)

• If T = ADD, set Ai := Iα + Iβ − Iγ ; P sets w[γ] := w[α] +w[β]

• If T = MULT , set (Lc,Rc,Oc) := (Iα, Iβ , Iγ); P sets (l[c], r[c],o[c]) =:
(w[α],w[β],w[α] ·w[β]). Increase c by 1.

After the circuit is processed, matrix L,R,O ∈ FN2×K , and A ∈ FN1×K are public; P has
(l, r,o,w) ∈ FN2 × FN2 × FN2 × FK .

2. P splits wire values (l, r, o, w) into chunks of size B, i.e., {li, ri,oi}i∈[n2] and {wi}i∈[k], such
that each element is in FB . FeSIMDZK is invoked to obtain commitments {JliK, JriK, JoiK}i∈[n2] and
{JwiK}i∈[k].

3. Then, (LinearMap, {JliK}i∈[n2], {JwiK}i∈[k],L) is sent toFeSIMDZK to check that l = Lw; similarly
check that r = Rw, o = Ow, and that 0 = Aw.

4. Let circuit CMult : F3 → F such that CMult(x, y, z) := xy − z. For i ∈ [n2], send
(Prove, CMult, JliK, JriK, JoiK) to FeSIMDZK.

Theorem 4.1.2. The Protocol Πcompiler (Figure 4.4) securely realizes the Functionality FZK in the
FeSIMDZK-hybrid model, with 0 soundness error.

Proof. Similarly, we construct a PPT simulator in two cases and argue that no PPT environment Z
can distinguish reality and the ideal world.

Malicious prover. The simulator S simulates the view of adversary A for the protocol execution of
Πcompiler as follows:

1. Following the protocol specification, S obtain matrix L,R,O andA from circuit C.

2. By emulating the (Commit) command of FeSIMDZK, S receives {li, ri,oi}i∈[n2] and {wi}i∈[k]
from A and sends A handlers {JliK, JriK,
JoiK}i∈[n2] and {JwiK}i∈[k].

3. After receiving (LinearMap, {τi}i∈[n2+k],L) from A, S checks whether {τi}i∈[n2] match
{JliK}i∈[n2] and {τi}i∈[n2+1,n2+k] matches {JwiK}i∈[k]. Then, S checks whether l = Lw.
If any check fails, S aborts; otherwise, S sends Pass to A. Similarly, S handles other three
(LinearMap) commands from A.

4. For i ∈ [n2], S receives (Prove, C, τ1, τ2, τ3) from A and checks whether {τ1, τ2, τ3} match
the tags {JliK, JriK, JoiK}. In each round, S also checks that li[j] · ri[j] = oi[j] for j ∈ [B]. If
any check fails, S aborts; otherwise, S sends Pass to A.

It is trivial that S is perfect, since whenever an ideal functionality is called in the protocol, S acts
exactly the same as the definition of the functionality. On the other hand, if the witness indeed
satisfies linear as well as the multiplication constraints, we can conclude that it satisfies circuit C.
Given the perfectness of the ideal functionality, we can conclude that the soundness error is 0.

4.1 Sublinear PCG-based ZKP for General Circuits 83

Malicious verifier. The simulator S simulates the view of adversary A for the protocol execution
of Πcompiler as follows:

1. S follows the protocol specification and obtain matrix L,R,O and A from circuit C.

2. By emulating the (Commit) command of functionalityFeSIMDZK, S sendsA handlers {JliK, JriK,
JoiK}i∈[n2] and {JwiK}i∈[k].

3. After receiving (LinearMap, {τi}i∈[n2+k],L) from A, S checks whether {τi}i∈[n2] match
{JliK}i∈[n2] and {τi}i∈[n2+1,n2+k] matches {JwiK}i∈[k]. Then, S queries FZK. If check fails
or FZK aborts, S aborts; otherwise, S sends Pass to A. Similarly, S handles other three
(LinearMap) commands from A.

4. For i ∈ [n2], S receives (Prove, C, τ1, τ2, τ3) from A and checks whether {τ1, τ2, τ3} match
the tags {JliK, JriK, JoiK}. In each round, S also queries FZK. If any check fails or FZK aborts,
S aborts; otherwise, S sends Pass to A.

Similarly, sinceS acts according to the definition of the ideal functionality and there is no commitment
opening during the protocol, the simulation is perfect.

As a result, no PPT environment Z can distinguish between the real-world scenario and the
ideal-world execution, which completes the proof.

4.1.5 Generic ZK for Limited-Memory

Besides a basic-version compiler, we also present another compiler that can deal with a situation
where the prover’s memory is limited. Although a similar question has already been proposed
before [BCC+13; GGP+13; Pat04; KST22], our construction does not rely on any complicated assump-
tion other than the realization of FeSIMDZK with the parameter τmax > 1. The protocol is shown
in Figure 4.5. We take the advantage of the commit-and-prove paradigm: instead of proving the
whole circuit at one time, circuit can be “partially" proved. The value of wires that connect between
different parts of the circuit can be reserved as commitments and used for the proof of connectivity.
Specifically, prover will clarify a space threshold parameter S before the proof, and the original
circuit C will be divided into ⌈|C|/S⌉ parts (denoted as C1, C2, . . . , C⌈|C|/S⌉), where each part contains
at most S gates. In each round, S gates of Ci will be read and processed in the memory, and P
generates the proof for Ci. At the end of each round, P commits to a vector which contains all the
wire values that are still active in Ci+1, and discards those that won’t be used in the remaining circuit.

To support this pruning operation, we add aDEL gate to the encoding of the circuit. P reads the
circuit from a stream of (α, β, γ, T), where T ∈ {ADD,MULT,DEL}. If T ∈ {ADD,MULT},
P processes gates α, β, γ similarly as the previous compiler. If T = DEL, P adds gate α to the set
D, which contains all the wire values that no longer appear in the next segment of the circuit. After
the proof of consistency inside Ci, P forms a new commitment to wire values that are not in the
set D. By applying FeSIMDZK.LinearMap, P proves that the committed wire values belongs to the
output wires of Ci, which are also the input of Ci+1. P and V repeat this procedure for the proof of
each segment.

Now we claim that if the plaintext evaluation of circuit C requires memory space M , then in
our protocol, the prover’s space complexity is O(M). Denote oi as the output of subcircuit Ci, and
circuit input x is denoted as o0. In each round, we call FeSIMDZK.Prove to complete the proof for Ci
and FeSIMDZK.LinearMap to prove the transformation between Joi−1K and JoiK. As each subcircuit
contains at most S gates, proving Ci requires O(S) space. And also, using FeSIMDZK.LinearMap
to prove the consistency between Joi−1K and JoiK requires O(|oi−1| + |oi|) space, so the space

84 Efficient Designated-Verifier Zero-Knowledge Proofs

Figure 4.5: Generic ZK in limited-memory scenario Πsmall−space

INPUTS: The prover P and verifier V hold an arbitrary circuit C over a large field F, and a space
threshold parameter S = sB for some integer s. P holds the secret input x such that C(x) = 0.

PROTOCOL:

1. Let h() : Z→ Z be a function map wire indices to physical indices andw be a dynamic list storing
wire value to be dealt with in the current round. Initially, set h(i) = i and w[i] = x[i] for all
i ∈ [|x|]. Define function Im() : f → Z, returning the maximum index that f has the definition.

2. Let D = ∅ and W = Im(h) + S. Initialize L, R, O, A to be empty matrices. Read the next S gates
to the memory (or until the last gate). For each in the form (α, β, γ, T):

• If T = ADD, set h(γ) := Im(h) + 1, compute r := Ih(α) + Ih(β) − Ih(γ) ∈ FW and append
r to A. P sets w[h(γ)] := w[h(α)] +w[h(β)]

• If T = MULT , set h(γ) := Im(h) + 1, append rows in FW Ih(α), Ih(β), Ih(γ) to ma-
trices L,R,O respectively. P sets w[h(γ)] := w[h(α)] · w[h(β)] and append values
w[h(α)],w[h(β)],w[h(γ)] to vectors l, r,o respectively.

• If T = DEL, add α to D.

Suppose that there are S1 = s1B addition gates and S2 = s2B multiplication gates (S = S1 + S2),
and after processing S gates, |w| = kB.A ∈ FS1×W and L,R,O ∈ FS2×W are public.

3. P splits wire values (l, r, o, w) into chunks of size B, i.e., {li, ri,oi}i∈[s2] and {wi}i∈[k], such
that each element is in FB . FeSIMDZK is invoked to obtain commitments {JliK, JriK, JoiK}i∈[s2] and
{JwiK}i∈[k].

4. Then, (LinearMap, {JliK}i∈[n2], {JwiK}i∈[k],L) is sent toFeSIMDZK to check that l = Lw; similarly
check that r = Rw, o = Ow, and that 0 = Aw.

5. Let circuit CMult : F3 → F such that CMult(x, y, z) := xy − z. For i ∈ [s2],
(Prove, CMult, JliK, JriK, JoiK) is sent to FeSIMDZK.

6. LetR = Domain(h) \ D. Suppose that |R| = k′. For the i-th element inR, let h′(R[i]) = i, and
set the ith row of H as Ih(R[i]).

7. P computes w′ such that for each w′[h′(i)] = w[h(i)]. Append 0 to w′ and 0 to H until the size
of w′ becomes a multiple of B. Supppose that |w′| = k′B, and then P calls Commit to obatin
{Jw′

iK}i∈[k′]. Update (h,w) := (h′,w′).

8. Both parties call (LinearMap, {w′
i}i∈[k′], {wi}i∈[k],H) to check the consistency between w and

w′.

9. If more gates need to be processed, jump to step 2.

complexity of each round is O(S + |oi−1| + |oi|). As a result, the overall space complexity is
O(S +max{|oi−1|+ |oi|}i∈[⌈|C|/S⌉]). Since in the plaintext evaluation of C, only active wire value
needs to be read into the memory, memory upper bound M ≥ max{|o0|, |o1|, |o2|, . . . , |o⌈|C|/S⌉|}.
By choosing S < M , we can conclude that the space complexity of the protocol is O(M).

4.1.6 Sublinear Designated-Verifier ZK

This section shows an instantiation of SIMD-ZK that benefits from our compiler. We leverage
Antman [WYY+22] to achieve a sublinear ZKP based on vector OLE.

4.1 Sublinear PCG-based ZKP for General Circuits 85

Figure 4.6: The protocol of SIMDZK from AntMan ΠAntMan

PUBLIC INPUT. The prover P and verifier V hold a general circuit C over a large field F, where C
contains n = |C| multiplication gates andm input gates. Let α1, . . . , αB ∈ F be B distinct elements
that are fixed for the whole protocol execution. Both parties invoke Initialize() in IT-PAC to obtain τ1.

PRIVATE INPUT. P holdsm witnesses w1, . . . ,wm ∈ FB such that C(w1[i], . . . ,wm[i]) = 0 for all
i ∈ [B].

COMMIT: On input w ∈ FB , P computes polynomial f(·) =
∑B−1

i=0 fi · Xi such that for i ∈ [B],
f(αi) = wi. Both parties invoke (⟨b⟩, τ2)← PreGen(f). P obtains ⟨b⟩ and V obtains τ2. If Λ has been
revealed, invoke (M,K)← Gen(τ1, τ2). P holds M and V holds K.

OPEN: On input (Jf(·)K, f(·),Λ), both parties compute that JµK := Jf(Λ)K− f(Λ). Let H : {0, 1}∗ →
{0, 1}λ be a random oracle. P sends H(Mµ) to V who checks whether H(Mµ) = H(Kµ).

AntMan: VOLE-based Designated-Verifier ZK. AntMan [WYY+22] is a sublinear VOLE-based
ZK proof for SIMD circuits, which only requires communicating O(B + |C|) field elements to
prove a (B, C)-SIMD circuit. It also presents a construction for proving a single execution of an
arbitrary circuit, by breaking down the circuits into individual gates and batching them as SIMD
circuits. The proving of SIMD circuits requires sendingO(|C|/B +B) field elements, and the cost to
check the wire-value consistency is O(B3), which leads to O(|C|3/4) communication complexity in
optimal. It is the only sublinear-communication VOLE-ZK protocol for proving an arbitrary circuit.
In AntMan [WYY+22], the information-theoretic polynomial authentication code Πk

IT-PAC servers as
a polynomial commitment scheme. For arbitrary degree-k polynomial f(·) known by P, an IT-PAC
Jf(·)K consists of a MAC M ∈ F known by P and a tuple of keys (K,∆,Λ) ∈ F3 known by V, such
that M = K + f(Λ) ·∆.

In the following, we first detail the commitment scheme used in the AntMan protocol, then
discuss how to enable AntMan to prove arbitrary circuits.

Information-theoretic polynomial authentication code ΠIT−PAC. As shown in Figure 4.7, the protocol
is designed in the (FVOLE,FCom)-hybrid model. It adopts additively homomorphic encryption (AHE)
scheme to obliviously evaluate a polynomial, where the polynomial is known byP and the secret point
Λ is known by V. Then VOLE correlations further transform such oblivious polynomial evaluation
(OPE) into IT-PACs. A critical issue is to guarantee that the HE ciphertext which encodes the
evaluation point Λ is correct. Instead of using the zero-knowledge proof of knowledge for the proof
of validity (as done in several MPC protocols [KPR18; DPS+12]), AntMan utilizes a simple commit-
and-open approach. Specifically, V first commits to the randomness that are used to generate the HE
ciphertexts ⟨Λ1⟩, . . . , ⟨Λk⟩. After receiving HE ciphertexts from V, P performs the homomorphic
evaluation and commits to all of HE ciphertexts ⟨b⟩ that it should send to V for OPE. Then V opens
the randomness and let P check the correctness of ⟨Λ1⟩, . . . , ⟨Λk⟩. If they are valid, P opens ⟨b⟩ to
continue with the execution of OPE. This allows the AntMan protocol to remove the possible leakage
of secret polynomials, which is incurred by homomorphically performing polynomial evaluation
upon incorrect ciphertexts.

AntMan++: Sublinear Designated-Verifier ZK. By applying our SIMD compiler to the original
SIMD AntMan, we propose AntMan++, which is a more efficient VOLE-based ZK proof for arbitrary
circuits. Similar to the original AntMan, we first batch arithmetic gates and prove their correctness.
The generation of IT-PACs of all the wire values incurs O(|C|/B) communication communication
complexity. Additionally, checking the correctness of multiplication gates requires an opening of

86 Efficient Designated-Verifier Zero-Knowledge Proofs

Figure 4.7: Protocol for generating IT-PACs Πk
IT-PAC

Let AHE = (Setup,KeyGen,Enc,Dec) be an additively homomorphic encryption scheme. Suppose
that two parties P and V have already agreed a set of public parameters par = Setup(1λ) and global
key ∆ ∈ F. Let G be a PRG. Let k be the maximum degree of the polynomials committed in each
IT-PAC.
INITIALIZE.

1. V samples seed← {0, 1}λ, and then V and P call the (Commit) command of FCom with input
seed, which returns a handle τ1 to P .

2. V samples Λ ← F and runs ⟨Λi⟩ ← Enc(sk,Λi; ri) for all i ∈ [1, k] where (r0, r1, . . . , rk) =
G(seed) and sk← KeyGen(par; r0). Then, V sends the AHE ciphertexts ⟨Λ1⟩, . . . , ⟨Λk⟩ to P .

PRE-GEN. On input f ,

3. P and V sends (extend) to FVOLE, which returns u,w to P and v to V , such that w = v+ u ·∆.

4. On input polynomial f(·) =
∑k

i=0 fi·Xi ∈ F[X],P computes a ciphertext ⟨b⟩withu+b = f(Λ)

via ⟨b⟩ =
∑k

i=1 fi · ⟨Λi⟩+ f0 − u.

5. P and V call the (Commit) command of FCom with inputs ⟨b⟩, which returns a handle τ2 to V.

GEN. On input (τ1, τ2),

6. V and P call the (Open) command ofFCom on input τ1, which returns (seed, τ1) to P. In parallel,
V sends Λ to P . Then, P computes (r0, r1, . . . , rk) := G(seed) and runs sk← KeyGen(par; r0).
P checks that ⟨Λi⟩ = Enc(sk,Λi; ri) for all i ∈ [1, k], and aborts if the check fails. P sets
M := w.

7. P and V call the (Open) command of FCom on input τ2, which returns (⟨b1⟩, . . . , ⟨bℓ⟩, τ2) to V.
Then, V runs b← Dec(sk, ⟨b⟩), and then computes K := v − b · Λ ∈ F.

8. Two parties obtain an IT-PAC [f(·)], where P holds (f(·),M) and V holds K.

size B.
The improvement of AntMan++ lies in the proof of wire consistency. As shown in Πcompiler, this

problem is transferred into proof of linear map. And we use a random vector to further transfer
linear-mapping proof into inner-product proof. In AntMan, we observe that the proof of the inner
product between public and private vectors takes only O(B) communication overhead. Suppose the
challenge vector r is public and witness x is private, and the IT-PACs of two vectors are known to
both parties. After the secret evaluation point Λ is revealed, both parties can locally calculate fr(Λ)
because r is known. Via the additively homomorphic property of IT-PACs, both parties compute
fr(Λ) · JxK, which is also the IT-PAC of Hadamard product of r and x. In this way, both parties
compute n + k IT-PACs and add them up to obtain JqK. In the end, according to the protocol in
figure 4.3, both parties open the vector of size B and check whether their sum equals 0. As a result,
the communication cost of AntMan++ is O(|C|/B + B). When setting B = |C|1/2, it results in
O(|C|1/2).

The full description of SIMD AntMan is shown in Figure 4.6 and Figure 4.8.

Performance evaluation. We implement the AntMan++ protocol and benchmark its performance. Its
homomorphic encryption (HE) is supported by the Microsoft SEAL [22] and other cryptographic
building blocks are from EMP-toolkits [WMK16]. Two Amazon EC2 m5.8xlarge instances
located in the same region are running as P and V. We manually throttle the network to simulate

4.1 Sublinear PCG-based ZKP for General Circuits 87

Figure 4.8: The protocol of SIMDZK from AntMan (Cont.) ΠAntMan (Cont.)

PROVE: On input (C, Jw1K, . . . , JwmK), P and V do:
1. For each gate (α, β, γ, T) in C, two parties holds IT-PAC of input wire vectors JfK and JgK:

• If T = ADD, both parties locally compute output IT-PAC JhK = JfK + JgK.

• If T = MULT , P computes a degree-(2B − 2) polynomial h̃(·) := f(·) · g(·) ∈ F[X]

and a degree-(B − 1) polynomial h(·) such that h(αi) = h̃(αi) for all i ∈ [B]. Then, P
and V run sub-protocol Π(2B−2)

PAC to generate two IT-PACs Jh(·)K and Jh̃(·)K.

As there are n2 multiplication gates, the commitments of their outputs are denoted
as Jh1K, . . . , Jhn2

K. Consequently, their degree-(2B − 2) polynomials are denoted as
Jh̃1K, . . . , Jh̃n2K.

2. P samples two random polynomials r(·) and s(·) of respective degrees B − 1 and 2B − 2 in
F[X] such that r(αi) = s(αi) for i ∈ [1, t]. Then, P and V generate the corresponding IT-PACs
Jr(·)K and Js(·)K.

3. V samples seed ← {0, 1}λ and sends it to P. Then, two parties compute (χ1, . . . , χn2
) :=

Hash(seed) ∈ Fn2 .

4. P and V locally compute Jh(·)K :=
∑n2

j=1 χj · Jhj(·)K+ Jr(·)K and Jh̃(·)K :=
∑n2

j=1 χj · Jh̃j(·)K+
Js(·)K. Then, P sends the polynomial pair (h(·), h̃(·)) to V, who checks that h(·), h̃(·) have the
degrees B − 1 and 2B − 2 respectively and h(αi) = h̃(αi) for all i ∈ [1, t].

5. P and V run Gen(τ1, τ2) to open Λ to P, and then V can compute the local keys on all IT-PACs.

6. P and V run a VOLE-based zero-knowledge proof

DVZK
{
(Jfj(Λ)K, Jgj(Λ)K, Jh̃j(Λ)K)j∈[n2] | ∀j ∈ [n2], h̃j(Λ) = fj(Λ) · gj(Λ)

}
.

7. P and V locally compute [µ] := [h(Λ)]− h(Λ) and [ν] := [h̃(Λ)]− h̃(Λ). Then, two parties run
Open to check that µ = 0 and ν = 0.

8. Let Jv(·)K be the IT-PAC associated with the output values circuit C. P and V runOpen to check
v(Λ) = 0.

If any check fails, V aborts.

low-bandwidth settings. We use the same 59-bit FFT-friendly field as the AntMan [WYY+22]. The
performance of AntMan++ is not affected by the circuit structure and we benchmark with layered
circuits for convenience. In all experiments, we randomly sample a circuit with 216 input wires, 227
addition gates and 227 multiplication gates distributed at 212 layers. We compare AntMan++ with
the prior general VOLE-ZK Quicksilver [YSW+21] and use its default parameter setting in [WMK16].
We do not compare with AntMan [WYY+22] because it only proves SIMD circuits.

We first benchmark the running time and communication overhead with variable batch size
log2B ∈ [9, 12]. AntMan++ is split into the input-independent setup phase and online phase, and
their performance is reported separately. As shown in Table 4.1, the increase of B leads to the
significant reducing of the online communication overhead. The setup communication is dominated
by HE ciphertexts and rotation keys. For the security of HE, the ciphertext size is fixed for all
log2B ≤ 11 and start to increase when B ≥ 12. The running time for both setup and online phases
increase with B. The overhead mainly comes from the ciphertext rotation during the setup phase
as well as the HE evaluation and polynomial multiplication during the online phase. Although its

88 Efficient Designated-Verifier Zero-Knowledge Proofs

running time is 2.1× ∼ 3.2× longer than Quicksilver, the bandwidth usage is 17.5× ∼ 83.6×
smaller.

Then we show the running time with the variable network bandwidth and the number of threads
(Table 4.2). The batch size is fixed to be B = 211. AntMan++ is highly efficient in terms of network
communication with asymptotically O(C/B) overhead. Its running time does not significantly
deteriorate with the decreasing of bandwidth. On the other hand, AntMan++ is computationally
heavy but fully parallelable, thus multi-threading is effective on increasing its throughput. When
the number of threading is increased from 1 to 4, the running time is decreased by 36% ∼ 38%.
Compared to Quicksilver, it requires 70% less running time when bandwidth is 10Mbps and 30%
less when bandwidth is 25Mbps.

4.2 DV-NIZK from Public-Key PCF-based OT
In this section, we present our contribution to constructing an efficient designated-verifier non-
interactive zero-knowledge (DV-NIZK) scheme based on public-key PCF-based OT. Our framework,
described in Section 4.2.3, enables the direct construction of DV-NIZKs using public-key PCF-based
OT in a black-box manner. To support the efficiency claims of our scheme, we outline our contribution
of a new, efficient public-key PCF-based OT construction along with optimizations in Section 4.2.4.
Finally, we provide concrete parameter choices for instantiating our PCF-based OT and DV-NIZK
scheme in Section 4.2.5.

4.2.1 Motivations and Related Works

Generating pseudorandomcorrelations. Recently, a new paradigm has emergedwhich enables the
silent generation of long correlated pseudorandom strings [BCG+18; BCG+19b; BCG+19a], removing
essentially all of the communication in the preprocessing phase. Concretely, this is made possible by
the mean of cryptographic primitives, such as pseudorandom correlation generators (PCG) [BCG+19b]
and pseudorandom correlated functions (PCFs) [BCG+20a].

A PCG is a pair of algorithms (PCG.Gen,PCG.Expand)where PCG.Gen produces two short keys
(k0, k1), and PCG.Expand(σ, kσ) produces a long string yσ such that (y0, y1) form pseudorandom
samples from the target correlation. PCGs enable silent secure computation as follows: using a small
distributed protocol to securely generate the keys (k0, k1), two parties can afterwards locally expand
them into long correlated pseudorandom strings without any further communication. The online
phase proceeds as before.

PCGs suffer from a considerable limitation: after distributing the keys, the parties are bound to
generate all at once a priori fixed amount of correlated randomness. PCFs overcome this issue: a
PCF is a pair of algorithms (PCF.Gen,PCF.Eval) where PCF.Gen produces two short keys (k0, k1),
and PCF.Eval(σ, kσ, x) outputs yxσ where for each new input x, (yx0 , yx1) appears like a fresh sample
from the target correlation. Hence, after distributively generating the keys (k0, k1) once and for
all, two parties can generate on-the-fly any amount of target correlations in all their future secure
computations.

The line of work on PCGs and PCFs has been fairly successful: modern PCG protocols for the
oblivious transfer (OT) correlation (often called silent OT extension) can stretch up to 10M OT/s on
one core of a standard laptop [CRR21; BCG+22; RRT23] from keys in the 10∼20kB range, and the
fastest PCFs for OT [BCG+22] can generate up to 100k OT/s on one core of a standard laptop.

Public-key silent OT. The silent generation of correlated randomness from PCGs or PCFs requires

4.2 DV-NIZK from Public-Key PCF-based OT 89

two parties to engage in an interactive protocol to securely generate the PCG/PCF keys. Public-key
PCFs reduce this interactive phase to a bare minimum, by replacing it with a public-key setup.
More precisely, after publishing their public keys online, any pair of parties on a network can start
generating correlated randomness, without any interaction beyond the initial PKI. Public-key silent
correlated randomness generation is somewhat of a holy grail in this line of work: it would represent
a major step towards bridging the usability gap between secure communication (since PKI suffices to
enable efficient pairwise secure communication) and secure computation, but public-key PCFs for
OTs have so far proven considerably harder to achieve than standard PCG and PCFs. Until recently,
we simply had no public key silent OT construction, beyond heavy-hammer constructions from
obfuscation or threshold multikey FHE.

This changed recently with the result of [OSY21], which achieved the first practical public-key
silent OT, assuming the quadratic residuosity assumption and the existence of correlation-robust
hash functions. However, the efficiency of the new construction of [OSY21] still lags way behind
that of state-of-the-art PCFs for OTs. Concretely, their construction relies on a new distributed
discrete logarithm protocol that allows two parties, given multiplicative shares of a value Gx (where
G generates a suitable DLog-easy group), to non-interactively compute additive shares of x. The
public-key silent OT construction of [OSY21] has public keys of size around 1kB for one of the parties,
and about 50kB for the other. In terms of computational efficiency, the cost of generating a single
OT correlation is dominated by λ exponentiations with an exponent in ZN ·2λ , where N is an RSA
modulus. Using λ = 128 and logN = 3072, this translates to 128 exponentiations with 3200-bit
exponents and takes about one second on one core of a standard laptop, which is between four and
five orders of magnitude slower than the state-of-the-art PCF of [BCG+22]. In summary, as of today,
the fundamental goal of obtaining concretely efficient and usable public-key silent OTs remains open.
Zero-knowledge proofs. ZKPs allow a prover to prove a statement is valid without revealing any
information beyond its validity. NIZKs are ZKPs with a single flow from the prover to the verifier. It is
a standard result [GO94] that NIZK proofs cannot exist in the plain model for all of NP. The standard
way to circumvent this limitation is to let the prover and the verifier access a common random string
which is generated by a trusted setup. There have been several works in realizing the notion of NIZK
for general NP language from various assumptions such as trapdoor permutations which can be
instantiated from factoring [BFM88] the Diffie-Hellman assumption over bilinear groups [GOS06]
or Hidden-Bits Paradigm, indistinguishability obfuscation [SV14]. Recently, a recent line of work
proposed several instantiations for the Fiat-Shamir transformation based on the hash function which
satisfies a property called correlation intractability, then the Fiat–Shamir transform can be applied
soundly to remove the interaction of proofs. Following this line of work, Peikert and Shiehian [PS19]
gave a construction of NIZKs from plain Learning with Errors, and later Brakerski et al. [BKM20]
recently showed that NIZKs can be constructed based on the hardness of both the learning parity
with noise (LPN) assumption and the existence of trapdoor hash functions. Therefore, the remaining
task would be how to construct efficient NIZKs from the minimal assumption. To investigate NIZKs
based on minimal assumptions and to push NIZK schemes to the practical limit, several relaxations
of NIZKs have been introduced, such as designated verifier NIZKs (DV-NIZKs) or designated prover
NIZKs (DP-NIZKs), where a trusted third party additionally gives a secret verification key to the
verifier or a secret proving key to the prover, or preprocessing NIZKs (PP-NIZKs), in which the
trusted party generates both a secret verification key for the prover and a secret proving key for the
prover.
DV-NIZK. A designated-verifier NIZK is a relaxed variant of NIZK where only the verifier who
owns a secret key can verify the proof. In the DV-NIZK scheme, the trusted party generates a CRS
together with a secret key which is given to the verifier and is used to verify whether a proof is

90 Efficient Designated-Verifier Zero-Knowledge Proofs

accepted or rejected. Since whether the verifier accepts or rejects a proof depends on the secret
verification key then two different DV-NIZKs settings have been proposed one-time DV-NIZKs and
reusable DV-NIZKs; in one-time DV-NIZKs, the secret verification key can be only used for one proof
of a statement while in reusable DV-NIZKs, the soundness still holds even the verifier uses a secret
verification key for many proofs , i.e., the malicious prover learns nothing except the validity when
producing many proofs for different statements and see whether they are accepted or rejected.

We explore an application of public-key PCF to designated-verifier zero-knowledge proofs (DV-
NIZKs). A DV-NIZK allows any prover to demonstrate the truth of a statement using a single message,
such that the proof can be verified using a secret verification key. DV-NIZKs are believed to be easier
to obtain than standard NIZKs, in the following sense: they are known to exist under the plain CDH
assumption in pairing-free groups [CH19; QRW19; KNY+19], while NIZKs are only known in pairing
groups, or using subexponential hardness assumptions [JJ21; CJJ+23]. Yet, efficiency-wise, we do not
know of any concretely efficient construction of DV-NIZKs in pairing-free groups (efficient NIZKs are
known in pairing groups [GS08; KW15; CH20], and known DV-NIZKs in pairing-free groups rely on
the hidden bit model, for which no concretely efficient instantiation is known). We show how, using
a public-key PCF, one can compile any Σ-protocol with binary challenge into a DV-NIZK. Plugging
our construction of public-key PCF, we obtain a new DV-NIZK from polynomial assumptions over
pairing-free groups for all languages that admit a bit Σ-protocol, with communication comparable
to that of the Σ-protocol. Conceptually, our result can be seen as observing that a public-key PCF
suffices to upgrade non-reusable DV-NIZKs (which exist from public key encryption [CHH+07]) into
reusable DV-NIZKs.

4.2.2 Detailed Contributions

In this section, taking advantage of non-interactive PK-PCF, we propose a new construction of reusable
DV-NIZK argument of knowledge from a compiler that combines a sigma protocol for general NP
language and a public-key pseudorandom correlation function (PK-PCF). Specifically, our reusable
DV-NIZK comes from three ingredients:

• A Σ-protocol [CDS94] with 1-bit challenges for a language L, for example Blum’s protocol for
graph Hamiltonicity [Blu86].

• A strong public key PCF for OT correlation where the key evaluation of each party can be
silently obtained from their own secret key and public key of the other.

• A non-reusable DV-NIZK with computational adaptive soundness and adaptive zero-knowledge
properties.

We also show how to enhance our construction to obtain a reusable DV-NIZK based on a weak public
key PCF instead of the strong one. We state the formal result below.

Theorem 4.2.1 (informal). If there exists a weak public-key PCF then we can construct a reusable
DV-NIZK argument of knowledge for any NP language L from a Σ-protocol for L and a non-reusable
DV-NIZK scheme.

The main idea behind our construction is the following. The designated verifier samples a PCF
key pair (skV , pkV) and outputs a CRS containing their public key. A prover with statement x and
witness w can then sample their own PCF key pair (skP , pkP) to produce a shared evaluation key
with the designated prover. It then runs theΣ-protocol by computing a first message a. The challenge
being binary, there are 2 possible third message for a transcript starting with a. We let zb the third
message for challenge b ∈ {0, 1}. Doing this λ-times lead to 2λ triplets (ai, b, zi,b)i∈[λ],b∈{0,1}. The

4.2 DV-NIZK from Public-Key PCF-based OT 91

prover then uses their PCF evaluation key to compute 2λ pseudorandom masks ri,b by evaluating
the PCF on input x|i|b (or H(x|i|b) if the PCF is only weakly-secure). The prover finally outputs
pkP , (ai, zi,0 ⊕ ri,0, zi,1 ⊕ ri,1) as their proof.

The correctness of the PCF and Σ-protocol guarantee that the designated verifier can recover 1
mask out of each pair (ri,0, ri,1) and then can verify λ-transcripts, while security guarantees that
the prover cannot predict which of the two is recovered by the verifier and that the non-revealed
ri,b is pseudorandom, therefore providing soundness and zero-knowledge. A minor issue remains:
one needs to prevent the prover to sample maliciously their PCF key pair such that it can predict
the challenge bit. We show that it is sufficient to require the prover to additionally provide a proof
(using a non-reusable DV-NIZK) that their PCF public key was generated from a honest execution of
the PCF key generation algorithm (with possibly bad randomness).

Efficient Public-Key PCF for OT correlation. At the heart of our DV-NIZK construction is a new
Public-Key PCF for OT correlations. It allows us to get good concrete efficiency for the DV-NIZK
construction. At the time of writing, it is the state of art in term of efficiency and our PK-PCF is of
independent interest.

4.2.3 Construction of Reusable DV-NIZK

Σ-protocol. A Σ-protocol is a 3-move, interactive proof (Figure 4.9) which consists of three al-
gorithms (Σ.P1,Σ.P2,Σ.V). While (x,w) ∈ R, the prover inputs (x,w) to Σ.P1 and produces a
random message a to the verifier while a is considered as a commitment of x. The verifier then sam-
ples a random challenge bit b and sends it to the prover. The prover runs the algorithmΣ.P2(x,w, a, b)
to produce a response zb corresponding to bit challenge b and sends zb to the verifier. Finally, the
verifier runs Σ.V (x, a, b, zb) to decide whether accept or reject the proof.

Σ-protocol satisfies 3 properties: perfect completeness, 2-special soundness (given two ac-
cepting transcripts (a, 0, z0), (a, 1, z1) of a statement x then there exists an efficient algorithm
Σ.Ext(x, a, z0, z1) to extract the witness w) and special honest-verifier zero-knowledge (given b
ahead of time, there exists a simulator Sim(x, b) simulating the transcript (a, b, zb) without knowing
a witness). The Blum’s Hamiltonicity protocol [Blu86] is an instantiation of Σ-protocol with 1-bit
challenges for NP language.

Figure 4.9: Σ-protocol with challenge space {0, 1}

P V
(x,w) ∈ R x

a
$← Σ.P1(x,w)

a
−−−−−−−−−−−−−−−→ b

$← {0, 1}
b

←−−−−−−−−−−−−−−−
zb

$← Σ.P2(x,w, a, b)
zb

−−−−−−−−−−−−−−−→ Σ.V (x, a, b, zb)→ {0, 1}

Public-key PCF. Informally, a PK-PCF is defined in the same way as a standard PCF except for
the key generation Gen. In PK-PCF constructions, the Gen is instantiated by an algorithm which
distributes silently the evaluation key to both parties. Particularly, each party σ first generates a
secret key skσ then PCF.Gen(1λ, crs, σ, skσ) gives each party σ a public key pkσ for σ ∈ [0, 1] such
that after posting publicly the public keys (pk0, pk1), the key derivation algorithm PCF.KeyDer is
silently evaluated by each party to get a pair of evaluation keysKσ = PCF.KeyDer(σ, skσ, pk1−σ)

92 Efficient Designated-Verifier Zero-Knowledge Proofs

for σ ∈ [0, 1]. We formula the general construction of PK-PCF for OT correlation in Figure 4.10. Note
that in the DV-NIZK scheme, we take advantage of our PK-PCF construction for OT as a black-box
for constructing our DV-NIZK.

Figure 4.10: PK-PCF for OT correlation

PARAMETERS. PCF.Setup(1λ) $→ PCF.pp which is accessed by both parties. Given a randomly
public x is the point evaluation of PCF.

INTERACTION PHASE. For σ ∈ [0, 1]:

- Compute PCF.Genσ(1λ, crs)→ (pkσ, skσ) then party σ publishes pkσ .
- Party σ derivates its evaluation key as Kσ ← PCF.KeyDer(σ, skσ, pk1−σ) for σ ∈ [0, 1].

EVALUATION PHASE. PCF.Eval(1λ, σ,Kσ, x):

- If σ = 0, PCF.Eval(1λ, σ,Kσ, x) = (r0, r1).

- If σ = 1, PCF.Eval(1λ, σ,Kσ, x) = (b, rb).

To apply PK-PCF to our reusable DVNIZK scheme, we provide a stronger security definition of
PK-PCF. The formal definition is shown below:

Strong Security. Define Supp(PCF.Gen(1λ, pp, σ)) be a constraint relation such that for all
(skσ, pkσ) ∈ Supp(PCF.Gen(1λ, pp, σ)) then there exists a public coin ρ such that (skσ, pkσ) =
PCF.Gen′(1λ, pp, σ, ρ) (PCF.Gen′ is deterministic algorithm defined by adding a public coin to
PCF.Gen to make PCF.Gen deterministic).

For every σ ∈ {0, 1} and every non-uniform adversary A of size B(λ), it holds that for all
sufficiently large λ,

|Pr[ExpsecA,N,σ,0(λ) = 1]− Pr[ExpsecA,N,σ,1(λ) = 1]| ≤ ϵ(λ)

where ExpsecA,N,σ,b (b ∈ {0, 1}) is defined as in Figure 4.11. In particular, the adversary is given access
to N(λ) samples. Here, RSample is the algorithm for reverse sampling Y as in the Definition 2.7.1.

Non-reusable DV-NIZK arguments. Let LP be an NP language associated with an NP relation
RP . We take advantage of a (one-time) DV-NIZK scheme for LP which consists of three algorithms
dv = (dv.Setup, dv.P, dv.V). For convenience, we define the notion of a DV-NIZK as below.

• dv.Setup(1λ)→ (dv.crs, dv.T).

• dv.P(dv.crs, x, w)→ dv.π.

• dv.V(dv.crs, x, dv.π, dv.T)→ {0, 1}.
The dv scheme needs to satisfy perfect completeness, computational (bounded) adaptive knowl-
edge soundness and computational zero-knowledge properties. The non-reusable DV-NIZK can
be constructed from a public-key encryption scheme [PsV06] by λ invocations of Σ-protocol. In
our construction, dv is used to prove that the prover uses the correct form of pkP to generate the
proof. Specifically, for a statement pkP and a witness skP we consider pkP ∈ Lp, (pkP , skP) ∈ RP

if (pkP , skP) ∈ Supp(PCF.Gen0(1
λ,PCF.pp)).

4.2 DV-NIZK from Public-Key PCF-based OT 93

Figure 4.11: Strong security of a PK-PCF

ExpsecA,N,σ,0(λ) :

pp← PCF.Setup(1λ)

(skσ, pkσ)← PCF.Gen(1λ, pp, σ)

(sk1−σ, pk1−σ)← PCF.Gen(1λ, pp, 1− σ)

k1−σ ← PCF.KeyDer(1− σ, sk1−σ, pkσ)

For i = 1, . . . , N(λ) :

x(i) ←$ {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x

(i))

For all i ∈ [N(λ)]:

b← A(1λ, pk0, pk1, σ, skσ, (x(i), y
(i)
1−σ))

Output b

ExpsecA,N,σ,1(λ) :

pp← PCF.Setup(1λ)

∀pkσ such that: ∃skσ,

(skσ, pkσ) ∈ Supp(PCF.Gen(1λ, pp, σ))

(sk1−σ, pk1−σ)← PCF.Gen(1λ, pp, 1− σ)

kσ ← PCF.KeyDer(σ, skσ, pk1−σ)

For i = 1, . . . , N(λ) :

x(i) ←$ {0, 1}n(λ)

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ, σ, y

(i)
σ)

For all i ∈ [N(λ)]:

b← A(1λ, pk0, pk1, σ, skσ, (x(i), y
(i)
1−σ))

Output b

Reusable DV-NIZK from PK-PCF

We show how to combine a Σ-protocol (Figure 4.9), a non-reusable DV-NIZK, and a strong public-key
PCF to obtain a reusable DV-NIZK scheme for allNP language. LetR be anNP language, (x,w) ∈ R,
then our re-usable DV-NIZK scheme (Setup,P,V) is defined as detailed in Figure 4.12.

The reusable knowledge soundness of our DV-NIZK construction (Figure 4.12) follows from the
special soundness of Σ-protocol, knowledge soundness of DV-NIZK to extract a valid witness with
high probability whenever prover outputs an accepted proof. In particular, we build a simulator can
simulate the verification query without knowing the skV and an efficient extractor Ext can extract a
valid witness by using dv.Ext to get the skP then later use Σ.Ext with accepted transcripts to extract
witness w.

If the statement x is false, in each invocation i of Σ-protocol, then for each ai there is only one
challenge b that can have a valid response zi,b. In our construction, b ∈ [0, 1] is pseudorandomly
generated by the output of PCF, and the prover learns nothing about the bit b if the pkP is generated
honestly corresponding with the secret skP , note that this condition is maintained by using the
DV-NIZK scheme, so the prover can only cheat in Σ-protocol with a probability of (1/2)k after k
invocations by correctly guessing the bit challenge b.

Our DV-NIZK scheme (Figure 4.12) is zero-knowledge because there exists a simulator knowing
ahead of time the challenge b ∈ [0, 1] that can simulate the view of the verifier (ai, b, zi,b) without
knowing the witness. Therefore, the view of the verifier in Π can be simulated by a simulator that
for each i-invocation of the proof definesmi,b := zi,b ⊕ ri,b and picks a dummy item formi,1−b.

Theorem 4.2.2 (Completeness). If dv, Σ are complete and PCF is correct then DV-NIZK scheme from
Figure 4.12 is complete.

Proof. Consider (x,w) ∈ R, by completeness of the non-reusable DV-NIZK, dv.V(dv.crs, pkP , dv.π, dv.T)

94 Efficient Designated-Verifier Zero-Knowledge Proofs

Figure 4.12: Reusable DV-NIZK Π(Setup,P,V)

• Setup(1λ).

- Compute PCF.pp ← PCF.Setup(1λ), (pkV , skV) ← PCF.Gen1(1
λ,PCF.pp) and

(dv.crs, dv.T)← dv.Setup(1λ).
- Return crs := (PCF.pp, dv.crs, pkV) and T := (skV , dv.T).

• P(crs, x, w).

1. Compute (pkP , skP)← PCF.Gen0(1
λ,PCF.pp), k0 ← PCF.KeyDer(0, skP , pkV) and generate

dv.π = dv.P(dv.crs, pkP , skP).
2. For each i ∈ [1, λ] generate all Σ-protocol transcripts for both challenges b ∈ [0, 1]:

ai = Σ.P1(x,w)

zi,b = Σ.P2(x,w, ai, j) for b ∈ [0, 1]

3. Compute (ri,0, ri,1) = PCF.Eval(1λ, 0, k0, x) and for each i ∈ [1, λ], b ∈ [0, 1] define mi,b =
zi,b ⊕ ri,b.

4. Define the output π := (pkP , dv.π, {ai,mi,0,mi,1}i≤λ).

• V(crs, x, π, T).

1. Check if dv.V(dv.crs, pkP , dv.π, dv.T) = 1 then

Compute k1 ← PCF.KeyDer(1, skV , pkP) and for each i ∈ [1, λ], compute as follows:

PCF.Eval(1λ, 1, k1, x) = (bi, ri,bi), zi,bi = mi,bi ⊕ ri,bi

The output is defined V(crs, x, π, T) = 1 if Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ].

2. Otherwise, V(crs, x, π, T)→ 0.

accepts for all pair (pkP , skP) ∈ RP which is correctly generated and by correction of the PCF and
completeness of Σ-protocol, Σ.V (x, ai, bi, zi,bi) also accept for all i ∈ [1, λ].

Theorem 4.2.3 (Knowledge soundness). If dv is adaptive knowledge sound, Σ is 2-special sound and
PCF for OT correlation satisfies strong PK-PCF security property then DV-NIZK scheme from Figure 4.12
is reusable adaptive knowledge soundness.

Proof. We describe an efficient simulator Sim that correctly emulates the verifier without knowing
about skV . The simulator is done as follows:

- Sim.Setup(1λ): compute PCF.Setup(1λ) → PCF.pp, PCF.Gen1(1
λ,PCF.pp) → (pkV , skV)

and dv.Setup(1λ) → (dv.crs, dv.T), define the output (PCF.pp, dv.crs, pkV) → crs, a trap-
door T := (skV , dv.T) and erase skV .

- Sim.V(crs, x, π, dv.T): parse π = (pkP , dv.π, {ai,mi,0,mi,1}i≤λ), use the dv.Ext to extract
the skP , i.e., skP ← dv.Ext(crs, pkP , dv.T). From skP , for each i ∈ [1, λ], compute k0 ←
PCF.KeyDer(0, skP , pkV), (r0,i, r1,i)← PCF.Eval(1λ, 0, k0, x), (bi, ri,bi)← RSample(1λ, 0, (r0,i, r1,i))
then define (z0,i, z1,i) = (mi,0 ⊕ r0,i,mi,1 ⊕ r1,i).
Firstly, check that if (pkP , skP) /∈ RP then outputs 0. Otherwise, continue to checkΣ.V (x, ai, bi, zi,bi) =
1 for all i ∈ [1, λ]. If all checks succeeded, accept (output 1). Otherwise, reject (output 0). To

4.2 DV-NIZK from Public-Key PCF-based OT 95

extract a witness, pick i←$ [1, λ] then define w ← Σ.Ext(x, ai, zi,0, zi,1).

The simulator Sim first calls Sim.Setup(1λ) to generate crs, and store dv.T . Each time the A
sends a query (x, π) to the oracle O(crs, ., ., T), Sim simulates O(crs, ., ., T) (without knowing skV)
by running Sim.V(crs, x, π, dv.T) and outputs whatever Sim.V outputs. When A outputs a final
answer (x∗, π∗), Sim computes a witness w as in Sim.V.

We prove the following claim: for any input (x, π), it hold that

Pr

 (crs, T)← Setup(1λ)
b← Sim.V(crs, x, π, dv.T)

b′ ← V(crs, x, π, T)
: b = b′

 ≈ 1

We show that if b = 1, then b′ = 1 with overwhelming probability. Indeed, if b = 1 it means
- (pkP , skP) ∈ RP then dv.V(dv.crs, pkP , dv.π, dv.T) = 1.

- Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ] where bi ←$ {0, 1} (output of Rsample) then by the
soundness of Σ-protocol, we have (x,w) ∈ R with a probability of at least 1 − 1/2λ. This
leads to Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ] and bi ∈ {0, 1} (output of PCF.Eval) with a
probability of at least 1− 1/2λ.

Therefore, V(crs, x, π, T) = 1 , i.e., if Sim’s checks succeeding then the verifier’s checks necessarily
succeed with high probability. In particular, the probability that the Sim accepts the proof while the
verifier rejects it is at most ϵΣ = 1/2λ.

We next prove that if b′ = 1 then b = 1 with high probability. Assume the Sim rejects the
proof while the verifier accepts it. Let denote ϵ as the probability of verifier that accepts the proof.
Since Sim rejects the proof then at least one of checks must fail: either (pkP , skP) /∈ RP or ∃i ∈
[1, λ] : Σ.V (x, ai, bi, zi,bi) = 0 (bi is output of RSample). Because the verifier accepts the proof then
dv.V(dv.crs, pkP , dv.π, dv.T) = 1 and Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ] and bi is output of
PCF.Eval (computed honestly).

- By the knowledge soundness of dv then

Pr

[
(pkP , skP) /∈ RP

dv.V(dv.crs, pkP , dv.π, dv.T) = 1
skP ← dv.Ext(crs, pkP , dv.π, dv.T)

]
= ϵdv

- By the security of PCF, Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ] and bi is output of PCF.Eval
(computed honestly) can be simulated indistinguishable by Σ.V (x, ai, bi, zi,bi) = 1 for all
i ∈ [1, λ] and bi is output of RSample, i.e., a random bit. After that, since bi is uniformly
random then by the soundness of Σ- protocol, with high probability (x,w) ∈ R.
For convenience, we denote the event Σ.V (x, ai, bi, zi,bi) = 1∀i ∈ [1, λ] where bi ←$ {0, 1}
as Ver and ∃i ∈ [1, λ] : Σ.V (x, ai, bi, zi,bi) = 0 where bi ←$ {0, 1} as Bad. Then from the
security of PCF and the soundness of sigma protocol, we have:

Pr[Ver] ≥ ϵ− ϵPCF and Pr
[

Ver Bad
]
≤ ϵΣ

Observe that:

Pr[Ver] = Pr[Ver ∧ Bad] + Pr[Ver ∧ Bad]

= Pr[Ver |Bad] · Pr[Bad] + Pr[Ver ∧ Bad] ≤ ϵΣ + Pr[Ver ∧ Bad]

96 Efficient Designated-Verifier Zero-Knowledge Proofs

Then we obtain Pr[Ver ∧ Bad] ≥ ϵ − ϵPCF − ϵΣ. Putting everything together, the verifier
accepts a proof with probability of ϵ then the simulator also accept this proof with probability
of at least ϵ− ϵPCF − ϵΣ − ϵdv.

In conclusion, we have:

Pr

 (crs, T)← Setup(1λ)
b← Sim.V(crs, x, π, dv.T)

b′ ← V(crs, x, π, T)
: b = b′

 ≥ 1− µ

where µ = ϵdv + 2.ϵΣ + ϵPCF = negl(λ)(λ).
Now consider an A that outputs an accepting proof with probability of at least ϵ after Q polyno-

mial times queries to oracle O(crs, ., ., T). By the above claim, A outputs an accepting proof with
probability of at least ϵ−Q.µ after interacting Q times with Sim.V(crs, x, π, dv.T); moreover, with
probability at least 1− µ′ (µ′ = ϵdv + ϵΣ + ϵPCF), this proof is also accepted by Sim ’s verification
algorithm. Overall, Sim obtains a proof accepted by his verification algorithm with probability at
least ≈ ϵ− (Q+ 1)µ. In particular, this implies that w extracted by Sim from π satisfies (x,w) ∈ R
with probability at least ϵ− (Q+ 1)µ. Therefore, Sim extracts a valid witness with probability at
least ϵ− (Q+ 1)µ. As (Q+ 1)µ = negl(λ)(λ), we conclude that if A outputs an accepting proof
with non-negligible probability, then Sim extracts a valid witness with non-negligible probability.

Theorem 4.2.4 (Zero Knowledge). If dv is adaptive single-theorem ZK, Σ is special-honest verifier ZK
and strong PCF satisfies pseudorandom Y-output property then DV-NIZK scheme from Figure 4.12 is
adaptive multi-theorem ZK.

Proof. Denote SimΣ as the efficient simulator for Σ-protocol to prove HVZK property. Formally,
given a challenger bi ahead of time, SimΣ can output an accepting proof without knowing the witness
, i.e., SimΣ(x, bi)→ (a, bi, zbi) such thatΣ.V (x, a, bi, zbi) = 1. And for (one time) DV-NIZK scheme,
there exists a simulator Simdv = (Sdv

1 , Sdv
2) which is used to prove the zero-knowledge of scheme

where (dv.crs, dv.T) ← Sdv
1 (1λ) outputs a simulated common reference string and a simulator

trapdoor and dv.π ← Sdv
2 (dv.crs, dv.T , x) outputs an accepted proof.

We now construct a zero-knowledge simulator S = (S1,S2) below:
• S1(1λ) → (crs, T). On inputs 1λ and outputs crs ← (PCF.pp, dv.crs, pkV) and a trapdoor
T := (skV , dv.T) such that

- PCF.Setup(1λ)→ PCF.pp, PCF.Gen1(1
λ,PCF.pp)→ (pkV , skV)

- Sim1
dv(1

λ)→ (dv.crs, dv.T)

• S2(crs, T , x) → π. On inputs (crs, T , x), S2 randomly chooses a pair (pkP , skP) ∈ RP ,
computes PCF.KeyDer(1, skV , pkP) → k1 and for each invocation i ∈ [1, λ], computes as
below:

PCF.Eval(1λ, 1, k1, x) = (bi, ri,bi)

S2 uses the simulator SimΣ(x, bi) to get an accepting transcript (ai, bi, zi,bi) for each i ∈ [1, λ].
S2 now defines the output:

π := (pkP , dv.π, {ai,mi,0,mi,1}i≤λ)

where dv.π = dv.P(dv.crs, pkP , skP) and for each i ∈ [1, λ], mi,bi = zi,bi ⊕ ri,bi otherwise
mi,1−bi is picked randomly.

4.2 DV-NIZK from Public-Key PCF-based OT 97

To complete the proof, we consider a sequence of hybrid experiments:
• Hyb0. Namely, at the beginning of the game, the challenger samples Π.Setup(1λ)→ (crs, T)
and gives crs to the adversary, where crs ← (PCF.pp, dv.crs, pkV) and T := (skV , dv.T).
When the adversary makes a verification query on (x,w) ∈ R, the challenger replies with
Π.P(crs, x, w) = (pkP , dv.π, {ai,mi,0,mi,1}i≤λ).

• Hyb1. Same as Hyb0, except we replace:

- (dv.crs, dv.T) ∈ Π.Setup(1λ) by (dv.crs′, dv.T ′)← Sdv1 (1λ)

- dv.π ∈ π by dv.π′ ← Sdv
2 (dv.crs′, dv.T ′, pkP)

This is computational indistinguishable from Hyb0 by the the zero-knowledge of dv.

• Hyb2. Same asHyb1, except the challenger simulates {a′i, (m′
i,0,m

′
i,1)i≤λ} ∈ π by the following

way. For each i ∈ [1, λ],

- Compute k1 ← PCF.KeyDer(1, skV , pkP), (bi, ri,bi)← PCF.Eval(1λ, 1, k1, x)

- Use SimΣ for simulating (a′i, c
′
i,bi

) , i.e., compute (a′i, bi, c′i,bi)← SimΣ(x, bi)

- Define m′
i,bi

:= c′i,bi ⊕ ri,bi and m′
i,1−bi

is picked randomly

This is computationally indistinguishable from Hyb1 by the pseudorandom output of PCF and
HVZK of Σ-protocol. Indeed, the adversary can only compute the value of (bi, ri,bi) by the
PCF.Eval and from the view of adversary ri,1−bi is pseudorandom then mi,1−bi also for all
i ∈ [1, λ]. Moreover, for all (x,w) ∈ R, with the Π.Setup(1λ) := (crs′, T ′) where crs′ =
PCF.pp, dv.crs′, pkV), T ′ = (skV , dv.T ′) and prove π′ = (pkP , dv.π

′, {a′i,m′
i,0,m

′
i,1}i≤λ),

the adversary always accepts it , i.e., Π.V(crs′, x, T ′, π′) = 1.

4.2.4 Efficient Public-Key PCF-based OT

In this section, we describe our paradigm about constructing PCF for OT correlations from Pseu-
dorandomly Constrained PRFs. Then, we explain how to modify the Naor-Reingold PRF in order
to obtain a CPRF for the class of inner-product membership predicates, and show that two weak
PRF constructions can be expressed as such predicates, leading to instantiations of pseudorandomly
constrained PRFs and therefore of PCFs. Next, we provide several optimizations which benefit the
most efficient instantiations of our paradigm and detail our optimized PCF construction.

We then describe how our PCF can be turned into an efficient public-key PCF by relying on ideas
borrowed from [OSY21], and how to optimize the resulting construction. This section is a briefly
description about our new construction of PK-PCFs for OT correlation. We refer the reader to the
full version in [BCM+24] for a detailed explanation and the formal proofs of security.

A PCF for OT from Pseudorandomly Constrained PRFs

Let F = (F.KeyGen, F.Eval) be a (weak, strong) PRF with key space K and binary outputs. For
a key K ∈ K, let FK : x 7→ F.Eval(K,x). Also, let CPRF = (CPRF.KeyGen,CPRF.Eval,
CPRF.Constrain,CPRF.CEval) denote a constrained PRF for the class F = {FK}K∈K ∪ {1 −
FK}K∈K, i.e., F contains all predicates “F.Eval(K,x) evaluates to b” for b ∈ {0, 1} and K ∈ K.
Then, we construct a (weak, strong) pseudorandom correlation function for oblivious transfer corre-
lation as follows:

98 Efficient Designated-Verifier Zero-Knowledge Proofs

• The sender gets two independent master secret keys (msk0,msk1) of the CPRF. On an input
x, this party evaluates the CPRF on x using both keys to obtain two pseudorandom outputs
(y0, y1).

• The receiver gets a random (weak) PRF key K
$← K, and two constrained keys: ck0 that is

msk0 constrained at “FK(x) = 0”, and ck1 that is msk1 constrained at “FK(x) = 1”. On an
input x, this party computes b← FK(x), and sets yb ← CPRF.CEval(ckb, x). It then outputs
(b, yb).

Correctness is straightforward: for any x, the predicate FK(x) = b is satisfied for some b ∈ {0, 1},
hence the constrained key ckb yields the correct output yb by the correctness of the CPRF. Sender
security follows from the fact that the two constrained keys are constrained at FK and 1 − FK ,
respectively, hence both constrains can never be satisfied at the same time. Thus, by the security
of the CPRF, when FK(x) = b, the value y1−b is indistinguishable from random for the receiver.
Receiver security follows from the (weak) pseudorandomness of F , which entails that b = FK(x) is
pseudorandom from the sender’s perspective.

We sketch the full construction below (we omit the public parameters pp output by the CPRF for
simplicity):

• PCF.Gen(1λ) :

For b ∈ {0, 1}, runmskb ← CPRF.KeyGen(1λ). Then sample a secret keyK ←$ F.KeyGen(1λ)
for the PRFF . Compute ck0 ← CPRF.Constrain(msk0, fK) and ck1 ← CPRF.Constrain(msk1, 1−
fK). Output k0 ← (msk0,msk1) and k1 ← (K, ck0, ck1).

• PCF.Eval(σ, kσ, x) :

– If σ = 0, parse k0 = (msk0,msk1), and compute yb ← CPRF.Eval(msk0, x) for b ∈
{0, 1}, and output (y0, y1).

– Ifσ = 1, parse k1 = (K, ck0, ck1), and compute b← FK(x). Set yb ← CPRF.CEval(ckb, x),
and output (b, yb).

We further observe that the resulting PCF is precomputable as recently defined in [CMP+23]. Infor-
mally, it allows one of the parties to locally generate its own PCF key and compute its correlated
randomness entirely, before even knowing the identity of the other party. In the above construction,
the sender can precompute all pairs (y0, y1) ahead of time, and it is therefore precomputable.

We note that the fact that CPRFs for a class containing a PRF yield a PCF is not entirely new;
for example, a similar observation was briefly mentioned in [BGM+20]. However, the few known
constructions of sufficiently expressive CPRFs [BV15; AMN+18; CMP+23] are too expensive, and
using them within the above transformation yields PCFs that are much less flexible than generic
constructions based on homomorphic secret sharing or threshold FHE (that are not restricted to the
OT correlation), and much less efficient than state-of-the-art PCFs [BCG+20a; BCG+22]. Our key
contribution is identifying that a simple tweak to the Naor-Reingold PRF [NR97] yields an extremely
efficient pseudorandomly constrained PRF.

A CPRF for Inner-Product Membership from the Naor-Reingold PRF

Let us first recall the Naor-Reingold PRF [NR97], whose input domain is X = {0, 1}n. Let G = G(λ)
be a family of cyclic groups of prime order p = p(λ).

• F.KeyGen(1λ) : Sample g ←$ G and a1, a2, · · · , an ←$ Z∗
p. Output msk← (g, a1, · · · , an).

• F.Eval(msk, x) : On input x = (x1, · · · , xn) ∈ {0, 1}n, output g
∏n

i=1 a
xi
i .

4.2 DV-NIZK from Public-Key PCF-based OT 99

Evaluating the Naor-Reingold PRF requires a few multiplications, followed by a single exponentiation.
Its security reduces to the Decisional Diffie-Hellman assumption over G.

A no-evaluation-secure CPRF for inner-product. As a warm-up, we define the class of predicates

Cz : x→

{
0 if ⟨x, z⟩ = 0

1 otherwise.

That is, a constrained key for z allows evaluating the PRF on all inputs x where ⟨x, z⟩ = 0. Now,
consider the following extension of the Naor-Reingold PRF:

• F.Constrain(msk, z) : Sample r ←$ Z∗
p and define (α1, · · · , αn) ← (rz1 · a1, · · · , rzn · an).

Output ck = (g, α1, · · · , αn).

• F.CEval(ck, x) : On input x = (x1, · · · , xn) ∈ {0, 1}n, output g
∏n

i=1 α
xi
i .

Here, each key ai is blinded by a term rzi , and the outputs of the Eval and CEval algorithms coincide
when the blinding terms cancel out which happens precisely when the inner product ⟨x, z⟩ is equal
to 0 modulo the order of r. For a safe prime p with p − 1 = 2q, the order of r is q or 2q with
overwhelming probability, so with q ≫ n, ⟨x, z⟩ = 0 mod q iff ⟨x, z⟩ = 0 over the integers. More
precisely, we have:

F.CEval(ck, x) = g
∏n

i=1 α
xi
i = g

∏n
i=1(r

zi ·ai)xi = gr
∑n

i=1 xizi
∏n

i=1 a
xi
i

= (g
∏n

i=1 a
xi
i)r

⟨x,z⟩
= (F.Eval(msk, x))r

⟨x,z⟩

= F.Eval(msk, x) iff ⟨x, z⟩ = 0 .

Furthermore, when the adversary makes no query to the evaluation oracle, it can be shown that
the pseudorandomness of the above construction on a challenge input x where ⟨x, z⟩ ≠ 0 holds as
long as gr⟨x,z⟩ looks random for a uniformly random r ∈ Z∗

p. Indeed, the constrained key owner can
compute r⟨x,z⟩

∏n
i=1 a

xi
i and knows g, x, z. The actual evaluation is g

∏n
i=1 a

xi
i and the constrained

key reveals no information about r since ai are uniformly random in Z∗
p.

Before we move on, we make three observations:
• The algorithm F.CEval does not need to know z. Hence, our CPRF for inner products is also
constraint-hiding.

• We described the construction for an input and a constrain x, z ∈ {0, 1}n for simplicity, and
to match with the original construction of Naor and Reingold. However, the construction
extends immediately to the setting where x, z ∈ [±B]n, where B is some polynomial-size
bound (the security of the original Naor-Reingold construction for inputs of this form was
shown in [ABP15] to reduce to a variant of the Diffie-Hellman assumption). We then have
|⟨x, z⟩| ≤ n ·B2 and assuming n ·B2 ≪ q, the inner product is computed over the integers.

• Eventually, we also consider a straightforward modification of the construction where both
parties apply an arbitrary public preprocessing function p(·) on the input x before feeding it
into Eval or CEval. This allows to force the input x to have a specific format.

From no-evaluation security to full security. While the above construction can be attacked if the
adversary makes an evaluation query, we recall that any no-evaluation secure CPRF can be turned
into an adaptively secure CPRF (with any number of evaluation queries) in the random oracle model
by hashing the output, as in [AMN+18]. Hence, proving no-evaluation security suffices for our goal.

100 Efficient Designated-Verifier Zero-Knowledge Proofs

From inner product to inner product membership. We just turned the Naor-Reingold PRF
into a CPRF, but it is restricted so far to a small class of functions (inner product predicates) which
is of course too limited to instantiate our template PCF construction from Section 4.2.4. Our next
observation is that this class can be significantly expanded by adding elements of the form gr

−t to
the constrained key to help the evaluator cancel out some rt terms. Indeed, if the evaluator uses gr−t

instead of g as the basis for exponentiation, the computation of F.CEval(ck, x) becomes

F.CEval(ck, x) = (gr
−t
)r

⟨x,z⟩·
∏n

i=1(r
zi ·ai)xi

= (gr
⟨x,z⟩−t

)
∏n

i=1(r
zi ·ai)xi

= (F.Eval(msk, x))r
⟨x,z⟩−t

,

which is the same asF.Eval(msk, x) iff t = ⟨x, z⟩. What makes this observation particularly powerful
is that the evaluator can be given terms of the form gr

−t
for multiple values of t, and choose upon

evaluation the term gr
−t for t = ⟨x, z⟩. This yields a CPRF for the class of predicates

Cz,S : x→

{
0 if ⟨x, z⟩ ∈ S

1 otherwise

where S ⊆ Zp−1 is a polynomial size subset. The full construction is given below:
• F.Constrain(msk, z, S) : sample r ←$ Z∗

p. For every t ∈ S, define gt ← gr
−t and define

(α1, · · · , αn)← (rz1 · a1, · · · , rzn · an). Output ck = ((gt)t∈S , α1, · · · , αn).

• F.CEval(ck, x) : on input x = (x1, · · · , xn) ∈ [±B]n, set t← ⟨x, z⟩ and output g
∏n

i=1 α
xi
i

t .
Note that our prior claim that the constrained key contains no information about r does not longer
hold as it now contains gr−t for all t ∈ S, hence no-evaluation security is no longer unconditional.
We show that this construction is (no-evaluation) secure under a variant of the Diffie-Hellman
assumption which we call sparse power-DDH assumption and which states that given gr−t for various
t ∈ S, it is infeasible to distinguish gr

−t for t /∈ S from uniformly random group elements.1 The
sparse power-DDH assumption is a static falsifiable assumption. It generalizes in a natural way the
power-DDH assumption (which states that given gr

i for i = 1 to n, it is infeasible to distinguish
gr

n+1 from random), and is easily proven to hold in the generic group model since all exponents are
distinct univariate monomials (e.g., using [BBG05, Corollary A.3] , and observing that it is a special
case of the uber-assumption family).

Inner-Product Membership Weak Pseudorandom Functions

We observe that several known candidate weak PRFs can be expressed as IPM predicates. In this
section, we provide two candidates for IPM predicates that are BIPSW [BIP+18] and the XOR-
MAJ [Gol00; AL16]. We write IPM - wPRF to denote a weak PRF expressed as an IPM predicate.

TheBIPSWwPRF. In [BIP+18], the authors introduced several new low-complexitywPRF candidates,
together with some preliminary analysis to back up the security claims. Five years later, these
candidates have received some attention, both by cryptanalysts [CCK+21; JMN23] and in the context
of a range of applications, from secure computation to side-channel security [DGH+21; ADD+23;
DMM+21]. As the authors observed, one of their candidates (that we denote as BIPSW) can be
rephrased as an LWR-style wPRF: Fz(x) = ⌊⟨x, z⟩ mod 6⌉, with x, z ∈ {0, 1}n, and with the

1By t /∈ S, we mean t /∈ S but still t ∈ R, for some small supportR denoting the (polynomial-sized) range of possible
values for the inner-product ⟨z, x⟩, e.g., R = {−n ·B2, . . . , n ·B2} for x, z ∈ [±B]n

4.2 DV-NIZK from Public-Key PCF-based OT 101

rounding function defined as ⌊s⌉ = 0 if (s mod 6) ∈ {0, 1, 2}, and ⌊s⌉ = 1 if (s mod 6) ∈ {3, 4, 5}.
The authors initially suggested a key length n = 384 as a conservative choice for security. Several
attacks were later shown, in [CCK+21] and very recently in [JMN23], suggesting that the key length
should be increased to n = 770. We note that the BIPSW candidate fits particularly well in our
framework: it can be written as an IPM - wPRF by defining S = {s ≤ n : ∃k ≤ n/6, i ∈
{0, 1, 2}, s = 6k + i}. The size of S is n/2, which is as low as |S| = 385 for n = 770.
The XOR-MAJ wPRF. The previous construction works for arbitrary predicates P , provided that
P takes at most O(log n) bits as input. In this section, we observe that when P is of the form
P (x0, x1) = SYM0(x0)⊕ SYM1(x1), where SYM0,SYM1 are arbitrary symmetric functions, then
there exists an improved construction that handles predicates of arbitrary locality. This capture in
particular the XOR -MAJ predicate, which computes the XOR between the parity of the x0 input
and the majority of the x1 input. XOR -MAJ is probably the most common choice of predicate for
the GAR wPRF, and its properties have been studied extensively [AL16; CDM+18; Méa; YGJ+21;
Méa22; Üna23b].

We briefly outline how to express the GARwPRFwith theXOR -MAJ predicate as an IPM - wPRF
(the generalization to other symmetric functions is immediate). Assume that the predicate is
P = XORk -MAJℓ, which takes as input a (k + ℓ)-bit subset z of the bits of the secret key, and
outputs XOR(z1, · · · , zk)⊕MAJ(zk+1, · · · , zk+ℓ). Similarly to before, we parse a random input x
as an encoding of two random disjoint subsets (S0,x, S1,x) of [n], of size k and ℓ respectively. Then,
we let p(x) denote the length-n vector with 1’s at all entries indexed by S1,x, value ℓ+1 at all entries
indexed by S0,x, and 0’s everywhere else. Observe that this encodings yields

⟨p(x), z⟩ = HW((zi)i∈S1,x) + (ℓ+ 1) · HW((zi)i∈S0,x),

where HW(·) denotes the Hamming weight. Furthermore, since |S1,x| = ℓ, every integer ⟨p(x), z⟩
computed as above uniquely determines the pair (HW((zi)i∈S1,x),HW((zi)i∈S0,x))). In turn, sym-
metric functions such as XOR andMAJ are uniquely determined by the Hamming weight of their
inputs (in particular, XOR(z) returns HW(z) mod 2 and MAJ(z) returns 1 iff HW(z) > ℓ/2). Then,
using the fact that A⊕B = 0 iff A = B, we define S as follows:

S = {s = s1 + (ℓ+ 1)s0 ∈ [ℓ+ (ℓ+ 1) · k] : [HW(s1) mod 2] = [HW(s0) > ℓ/2]}.

Compared to the previous construction, this new construction is tailored to XOR -MAJ (or more
generally to predicates of the form P (x0, x1) = SYM0(x0)⊕ SYM1(x1)

2.). However, for a predicate
of locality ℓ+ k, the size of S scales as O(ℓ · k), which is an exponential improvement over the 2ℓ+k

cost of the generic construction. While the GAR wPRF is typically considered in the low-locality
setting, our construction allows simultaneously relying on a particularly conservative parameter
setting, using XOR -MAJwith localityO(

√
n) (in this parameter regime, the GAR wPRF is generally

conjectured to provide subexponential security 2O(
√
n)), and keeping S to a small size |S| = O(n).

Together with the BIPSW wPRF candidate, this instantiation yields the most efficient concrete
instantiations of our framework. To give a single data point, using the state-of-the-art cryptanalysis
on Goldreich-style local wPRFs, we can set the key length n to 256 and use the XOR10 -MAJ64
predicate to achieve 128 bits of security for up to 240 queries to the wPRF, and have |S| = 357.

Optimizations

The above framework can be largely improved by various optimizations. In this section, we sketch
several of them that allow improving the performance of our PCF. We provide a detailed description

2even more generally, the construction can be adapted to handle the XOR of any number N of symmetric predicates
with respective locality ℓ1, · · · , ℓN , with |S| = O(

∏N
i=1 ℓi)

102 Efficient Designated-Verifier Zero-Knowledge Proofs

of the optimizations in the full version.

Halving the key size. When we instantiate the framework of Section 4.2.4 using our Naor-Reingold
CPRF, the sender key consists of two master secret keys (g, a1, · · · , an) and (h, a′1, · · · , a′n), and
the receiver key for the predicate Fz,S : x 7→ ⟨x, z⟩ ∈? S consists of (rzi · ai)i∈[n], ((r′)zi ·
a′i)i∈[n], (g

r−t
)t∈S , and (h(r

′)−t
)t∈[±n·B2]\S (where r, r′ are random elements of Z∗

p and B is a bound
on the entries of x, z). Thanks to the random self-reducibility of DDH, the two master secret keys
can use the same elements (a1, · · · , an) provided that they use different bases g, h. For the same
reason, we can also set r = r′ without any security loss. This reduces the sender key size by a factor
two, and significantly compresses the receiver key size as well. Concretely, we have:

• Sender key: (g, h, a1, · · · , an),

• Receiver key: (rzi · ai)i≤n, (gt)t∈[±n·B2],

where gt ← gr
−t if t ∈ S, and gt ← hr

−t if t ∈ [±n ·B2] \ S. The resulting construction is secure
under the same assumptions as the basic construction.

Reusing the gt’s. We observe that the value z (which relates to underlying PRF key used by the
receiver) is known only to the receiver, while the set S is public (and relates to the definition of the
PRF). In a multiparty setting where the sender wants to compute PCF keys with multiple receivers,
we can exploit this observation to define the gt’s once for all, and pass them as common parameters
to be used by all receivers. This requires adding two additional terms (a0,j , a′0,j) in the sender key for
each receiverRj , to re-randomize the bases g, h. That is, the sender now computes its pseudorandom
OT messages as

sx0,j ← ga0,j ·
∏n

i=1 a
xi
i sx1,j ← ha

′
0,j ·

∏n
i=1(a

′
i)

xi
,

where ga0,j and ha
′
0,j play the role of fresh new bases for each receiver Rj (the receiver CEval has

to be adapted accordingly). With this change, the gt’s can be viewed as public parameters (or as a
“public key" associated to the sender).

Compressing the ai’s. When instantiating the group with a suitable elliptic curve, the size of the
ai’s is typically 2λ bits (to achieve λ bits of security against generic discrete log attacks). To further
reduce the key size, the ai’s can be generated from a pseudorandom generator in a two-step fashion:
first, the sender receives a λ-bit seed seed and computes (g, h, seed1, · · · , seedn) ← PRG(seed),
where PRG : {0, 1}λ 7→ {0, 1}(4+n)·λ (each seedi is in {0, 1}λ). Second, define ai ← PRG′(seedi),
where PRG′ : {0, 1}λ 7→ {0, 1}2λ. This approach enables compressing both the sender key and the
receiver key:

• The sender key is now simply the λ-bit seed seed.

• The receiver key is still (rzi · ai)i≤n (together with the public gt terms), except that whenever
zi = 0, we have rzi ·ai = ai, which we can send in compressed form by replacing it with seedi,
which is twice smaller. When zi is a bitstring (which is the case for the BIPSW and XOR-MAJ
wPRFs), this reduces the size of about half of the rzi · ai to that of seedi, resulting in a 25%
reduction of the key length.

Exploiting the structure in S. Assume that S contains all integers s (from some bounded range
{0, · · · ,m · R}) such that (s mod m) < m/2, where m is some fixed value; we say that S is
m-antiperiodic. Then we almost have:

s /∈ S ⇐⇒ (s−m) ∈ S ,

4.2 DV-NIZK from Public-Key PCF-based OT 103

where the almost stems from the fact that the equivalence breaks down at the extremities: for example,
s = m/2 + 1 /∈ S, yet s−m /∈ S because s−m is outside of the bounded range {0, · · · ,m · R}.
Nevertheless, we can recover the equivalence by slightly extending S into S′ = S∪{−m/2, · · · ,−1}
(the equivalence becomes: for every s ∈ {0, · · · , R ·m}, s /∈ S′ ⇐⇒ (s−m) ∈ S′).

In this case, we observe that it is not necessary to include in the receiver key both (gt)t∈S and
(gt)t/∈S . Indeed, as we are constraining before a key msk0 with respect to the predicate “⟨x, z⟩ ∈ S”,
and a second key msk1 with respect to the predicate “⟨x, z⟩ /∈ S”, we can then rewrite the second
constraint as “⟨x, z⟩ −m ∈ S”. Concretely, we now deal a single key msk to the sender, but we add
an (n+ 1)-th element an+1 to act as a shift. The keys become:

• Sender key: msk = (g, a1, · · · , an, an+1)

• Receiver key: ck = (g, rz1 · a1, · · · , rzn · an, r−m · an+1), (gt)t∈S′ .
Given msk, on input x the sender computes their two OT inputs as sb ← F.Eval(msk, x|b) for
b = 0, 1. That is, we have:

sb ← g
∏n

i=1 a
xi
i ·abn+1 for b = 0, 1.

Now, because of the term r−m · an+1 in the key of the receiver, for every string x, there is only a
single b ∈ {0, 1} such that ⟨x|b, z| −m⟩ ∈ S, i.e. such that ⟨x, z⟩ − b ·m ∈ S′. Compared to the
previous construction, this (almost) halves the number of group elements gt in the receiver key, going
from m ·R to (m/2) · (R+ 1).

The BIPSW wPRF and the XOR-MAJ wPRF satisfy this property: the set S ism-antiperiodic with
m = 6 for BIPSW, and m = 49 for our parameter choice with XOR-MAJ. Hence, they can benefit
from this optimization.

Final PCF Construction

We are now fully equipped to describe our final PCF construction. Concrete parameters for both
instantiations based on the BIPSW and the XOR-MAJ are provided in the next section. Let the input
domain be {0, 1}ℓ. Let F be an IPM - wPRF with preprocessing function p : {0, 1}ℓ 7→ [0, B]n (for
some polynomial bound B), key space {0, 1}n and associated set S; that is, given a key z ←$ {0, 1}n
and an input x ∈ {0, 1}ℓ, Fz(x) outputs 1 iff ⟨p(x), z⟩ ∈ S. We assume that S is m-antiperiodic
for some integer m (i.e. S = {s ∈ {0, · · · , R} : s mod m < m/2} for some polynomial bound
R). Define S′ ← S ∪ {−m/2, · · · ,−1}. Fix a family of cyclic groups G = G(λ) of order p = p(λ).
Let G0 : {0, 1}λ 7→ Z∗

p × {0, 1}n·λ, G1 : {0, 1}λ 7→ Z∗
p, and G2 : {0, 1}λ 7→ {0, 1}n be three

pseudorandom generators. Let H : G 7→ {0, 1}λ be a hash function.

• PCF.Gen(1λ) : sample seed ←$ {0, 1}λ. let (g, seed1, · · · , seedn+1) ← G0(seed) and ai ←
G1(seedi) for i = 1 to n + 1. Sample seedz ∈ {0, 1}λ, r ←$ Z∗

p, and let z ← G2(seedz). For
i = 1 to n, set vi ← seedi if zi = 0, and vi ← r · ai otherwise. Set vn+1 ←$ r−m · an+1. Define
gt ← gr

−t for every t ∈ S′. Output k0 ← seed and k1 ← (seedz, v1, · · · , vn+1, (gt)t∈S′).

• PCF.Eval(0, k0, x) : recompute (g, seed1, · · · , seedn+1) ← G0(k0) and ai ← G1(seedi) for
i = 1 to n+ 1. Let (y1, · · · , yn)← p(x). Define

sb ← H
(
g
∏n

i=1 a
yi
i ·abn+1

)
for b = 0, 1.

Output (s0, s1).

• PCF.Eval(1, k1, x) : parse k1 as (seedz, v1, · · · , vn+1, (gt)t∈S′). Let (y1, · · · , yn) ← p(x).
Recompute z ← G2(seedz). For i = 1 to n+ 1, set αi ← G1(vi) if zi = 0 or i = n+ 1, and

104 Efficient Designated-Verifier Zero-Knowledge Proofs

αi ← vi else. Let b ← Fz(x) and t ← ⟨p(x), z⟩ − b ·m. Note that by definition, this means
that t ∈ S′. Define

sb ← H

(
g
∏n

i=1 α
yi
i ·αb

n+1

t

)
.

Output (b, sb).

To state our main theorem, we define the sparse power-DDH assumption with respect to S′. For
a group Gλ = ⟨g⟩ of prime order p, the sparse power-DDH assumption with respect to S′ over a
support [0, R] states that(

g, (gr·a
i
)i∈S′ , (gr·a

i
)i∈[0,R]\S′

)
≈
(
g, (gr·a

i
)i∈S′ , (gti)i∈[0,R]\S′

)
,

where ≈ denotes computational indistinguishability, a, r $← Z∗
p, and ti

$← Z∗
p for all i ∈ [0, R] \

S′. Note that the bound R and the set S′ are fixed parameters of the construction; hence, this
assumption is a static, falsifiable variant of the power-DDH assumption used in several previous
works (e.g. [AMN+18]). It can be shown to hold in the generic group model. We obtain the following
theorem:

Theorem 4.2.5 (informal). Assuming that the sparse power-DDH assumption with respect to S′ holds,
that (G0, G1, G2) are pseudorandom generators, that F is a secure IPM - wPRF, and modeling H as a
random oracle, then the above construction is a weak pseudorandom correlation function for the oblivious
transfer correlation.

Note that, in the random oracle model, the construction can be upgraded to a strong PCF by first
hashing the inputs [BCG+20a] and can also be proven secure under a weaker search version of the
sparse power-DH assumption.

Distributed key generation. A useful feature of our PCF is that it admits a very efficient two-round
distributed key generation algorithm. Concretely, and borrowing the notations from the construction
above, the OT sender can simply generate seed and r themself, and send (gt)t∈S′ to the OT receiver
directly, together with vn+1 = r−m · ai. Then, the OT receiver samples seedz . Eventually, to obtain
the missing vi’s, observe that vi = seedi if zi = 0, and vi = r · ai otherwise. Therefore, the sender
and the receiver simply run n parallel instances of an oblivious transfer protocol, where the sender
input pairs (seedi, r · ai), and the receiver uses selection bits zi. Security follows immediately from
the security of the oblivious transfer protocol. Using a two-round OT protocol, the entire distributed
key generation can be done in two rounds, and the communication boils down to n parallel OTs plus
sending |S′| group elements.

4.2.5 Concrete Instantiation of DV-NIZK

Concrete Parameters for PK-PCF based OT

With all the above optimizations in mind, we provide two concrete instantiations of PCF for the OT
correlation, using either the BIPSW wPRF candidate, or the XOR-MAJ wPRF candidate.

Curve and exponentiations. To estimate the runtime of our constructions, we rely mainly on
the website zka.lc, which provides an extensive list of benchmarks for standard operations on
various curves and over various platforms. According to the benchmarks of zka.lc, computing
one exponentiation represents about 50µs of computation on one core of an AWS platform using
curve25519 [Ber06]. Note that in our construction, the sender must compute two exponentiations (to

zka.lc
zka.lc

4.2 DV-NIZK from Public-Key PCF-based OT 105

compute (y0, y1)) while the receiver computes a single exponentiation. However, the two sender
exponentiations use a fixed basis g. Hence, the exponentiations can be significantly sped up with
precomputation (in contrast, the receiver does an exponentiation with a basis gt which is chosen
based on the input). In our instantiations, exponentiations will generally dominate the runtime.
Using more efficient curves, such as Microsoft’s FourQ curve [CL15], the exponentiation time can
be reduced to about 15µs on a Haswell architecture (note that the curve offers slightly less security
compared to curve25519, about 122 bits instead of 128).

Parameters with BIPSW. For BIPSW, we used the state-of-the-art cryptanalysis from the works
of [CCK+21; JMN23], and set the key length to n = 770, which achieves 128 bits of security according
to these attacks. We note that this parameter choice ignores some significant polynomial factors in
the cost estimation (that come from a nearest neighbor search), hence our parameter choice takes a
bit of margin. Furthermore, the recent attack of [JMN23] has a much higher memory requirement
compared to previous attack. On the other hand, we warn the reader that the BIPSW candidate
is a relatively young wPRF and while a total break would be surprising at this point, the state of
cryptanalysis is likely to improve over the years. With n = 770, S is 6-antiperiodic and we have
|S′| = 388 With this parameter choice, the precomputable PCF has the following efficiency features:

• Key size: the receiver key size is 30.2kB (and the sender key size is 16 Bytes). Out of that,
12.1kB are public parameters (gt)t∈S′ , which the sender can reuse with other receivers.

• Computation: computing sb involves 385 multiplications over Z∗
p, one exponentiation, and

one hash. This translates to about 10k OT/s per core using curve25519 on an AWS platform, or
about 15k OT/s per core using a curve such as FourQ on a Haswell architecture.

Parameters with XOR-MAJ. For the GAR wPRF instantiated with the XOR-MAJ predicate, we rely
on the state-of-the-art cryptanalysis results from [AL16; CDM+18; YGJ+21; Üna23a]. Specifically,
according to Table 1 of [Üna23a], for a candidate to achieve λ bits of security with a key of length
n = λδ and a bound n1+e on the number of queries, the underlying predicate P must have

• rational degree at least δ
δ−1 · e+ 1, and

• resiliency at least 2e+ 1.
A k-variable Boolean function P has rational degree d if it is the smallest integer for which there
exist degree d polynomials g and h, not both zero, such that P · g = h. 3 A k-variate boolean
function is t-resilient if it has no nontrivial correlation with any linear combination of at most t of its
inputs. We note that Table 1 of [Üna23a] ignores the guess-and-decode attack of [YGJ+21], because
their attack does not have a closed-form formula. However, Both the guess-and-determine attack
of [CDM+18] and the guess-and-decode attack of [YGJ+21] are specifically targeted at predicates
with a very small locality (the papers consider localities from 5 to 8), and their complexity scales very
poorly for predicates with a larger locality. As we will see shortly, our candidates have considerably
higher locality (e.g. 74 in our main instantiation) and after selecting them, we verified individually
that they yield concrete instances which are (way) out of reach of the guess-and-determine and the
guess-and-decode attacks. In the following, we therefore use the two criteria above to select our
candidates.

The algebraic immunity and resiliency of the XOR-MAJ predicate have been studied in several
papers. To match the above two constraints, it suffices to use the XORℓ1 -MAJℓ2 predicate with
ℓ1 = 2 · (e + 1) and ℓ2 = 2δe/(δ − 1). We outline below a concrete choice of parameters for

3Table 1 of [Üna23a] mentions only the degree of the predicate, but strengthening the requirement to the rational
degree is known to be necessary [AL16; DMR23].

106 Efficient Designated-Verifier Zero-Knowledge Proofs

illustration: set δ = 1.143. This yields δ/(δ − 1) = 8 and n = λδ = 256 using λ = 128. We get
ℓ2 = 16e, and |S′| = 16e2 + 33e + 2. Setting e = 4, the parties can generate up to n1+e = 240

pseudorandom OTs and |S′| = 390. With this parameter choice, the precomputable PCF has the
following efficiency features:

• Key size: the receiver key size is 18kB (and the sender key size is 16 Bytes). Out of that, 12.2kB
are public parameters (gt)t∈S′ , which the sender can reuse with other receivers.

• Computation: computing sb involves 74 multiplications over Z∗
p, one exponentiation, and one

hash. This translates to about 15k OT/s per core using curve25519 on an AWS platform, or
about 40k OT/s per core using a curve such as FourQ on a Haswell architecture.

Note that other choices of parameters can yield different trade-offs, such as achieving slightly smaller
key size, slightly more OTs, or slightly less computation. For example, using δ = 1.2858 yields
n = 512, |S′| = 222, a slightly larger key size 18.9kB, 46 multiplications instead of 74, and a bound
of 245 on the target number of OTs.

Public Key PCF

We finally describe a public key PCF. Informally, a public key PCF allows users to generate a pair of
public/secret keys, and then to broadcast their public key using a single message, while storing their
secret key locally. Then, any pair of users can non-interactively obtain a PCF key pair (k0, k1) by
combining their secret key and the other party’s public key.

While the distributed key generation protocol described in Section 4.2.4 is particularly efficient, it
requires two rounds of interaction. The protocol we now describe uses a single round of interaction.
A major advantage of such protocol is that they enable n parties over a network to execute Ω(n2)
pairwise PCF key generations (to set up an OT channel between each pair of parties) using only
O(n) communication in total (this is similar to how non-interactive key exchange enable n2 pairs of
parties to agree on shared keys using O(n) communication).

A simple construction. In our interactive protocol, sending (gt)t∈S′ does not require interaction:
the interaction stems entirely from the OTs. We start with a protocol that replaces the two-round
OT with the non-interactive OT protocol of Bellare and Micali [BM90]. The objective is, for the
sender with input r, and the receiver with input zi, to distributively generate keys ai ∈ Z∗

p and
αi = r−zi · ai ∈ Z∗

p respectively. These values can be viewed as multiplicative shares over Z∗
p of r−zi

(up to inverting ai locally). We observe that if DDH holds over (a suitable subgroup of) Z∗
p, such

multiplicative shares can be directly obtained via the Bellare-Micali protocol. Concretely, let G′ be a
suitable cyclic subgroup of Z∗

p where DDH is conjectured to hold, and let (G,H) be two random
generators of G′, and let r ∈ G′. The protocol simply consists in having the sender send an ElGamal
encryption of r, while the receiver sends a Pedersen commitment to zi:

• Sender to receiver: pick a random coin ρ, and sends the ElGamal ciphertext (C0, C1) ←
(Gρ, Hρ · r).

• Receiver to sender: pick n random coins (θ1, · · · , θn) and send the Pedersen commitments
(H1, · · · , Hn)← (H−zi ·Gθi)i≤n.

• Output: for i = 1 to n, the sender outputs ai ← Hρ
i , and the receiver outputs αi ← C−zi

1 ·Cθi
0 .

Observe that

αi = C−zi
1 · Cθi

0 = Gρθi ·H−ρzir−zi = ai · r−zi .

4.2 DV-NIZK from Public-Key PCF-based OT 107

Furthermore, r is computationally indistinguishable from a random element of G′ under the
DDH assumption over G′, and the protocol statistically hides zi.

A first downside of this protocol is that we cannot set Z∗
p = G′, since DDH is easy over Z∗

p (it can
be broken by computing the Legendre symbol). However, assuming that p = 2q + 1 is a safe prime
(q is prime), we can set G′ to be the subgroup QRp of quadratic residues modulo p, where DDH is
widely conjectured to hold (for a sufficiently large p). This implies that the protocol generates a
(pseudo)random square r, instead of a random element of Z∗

p. This does not harm the security of the
CPRF but changes slightly the underlying sparse power-DDH variant: using r of the form w2 for a
(pseudo)random element w when computing gt ← gr

t
= gw

2t for t ∈ S′ amounts exactly to relying
on the sparse power-DDH assumption with respect to the set 2 · S′ = {2 · t : t ∈ S′}.

A more concerning downside is the size of p: due to subexponential-time algorithms for discrete
logarithm over finite fields, p should be taken much larger than 256 bits, at the very least 1024
bits. This forces the group G, over which we instantiate our PCF, to have order p ≥ 21024, which
considerably harms efficiency (both for key size and computation), and prevents us in particular to
rely on efficient 256-bit elliptic curves. We circumvent this issue by setting p to a smaller value (e.g.
a 256-bit prime), and relying on Paillier encryption.

Amore efficient variant. Assume for simplicity that p = 2q+1 for a prime q (the construction also
works fine with any large prime factor of p− 1). At a high level, we perform the Bellare-Micali-style
non-interactive protocol over a Paillier group (similarly as in [OSY21]) followed by a post-processing
operation which:

• converts the multiplicative shares over the Paillier group to subtractive shares modulo N
(where N is an RSA modulus) using a distributed discrete log algorithm,

• converts the shares moduloN to shares modulo q using the fact that subtractive shares modulo
N are with very high probability shares over Z when the shared value is sufficiently smaller
than the modulus,

• converts the additive shares modulo q into multiplicative shares over Z∗
p via exponentiation.

Let QRp denote the set of quadratic residues modulo p, which has order q. Let G be a basis of
QRp. Instead of sampling r ←$ QRp directly, Alice samples∆←$ Zq and sets r ← G∆ mod p (this
yields the same distribution). Let N be a public RSA modulus, whose factorization is unknown to
both parties. The protocol proceeds almost as the previous protocol, except that Alice sends a Paillier-
ElGamal encryption of ∆ (viewed as an integer in {0, · · · , q − 1}) instead of an ElGamal encryption
of r. Let (G,H) be two random elements of ZN2 . Our protocol borrows ideas from [OSY21]. It builds
upon a distributed discrete logarithm algorithm DDLOG over ZN2 , which has the following features:
given respective multiplicative shares (Ssend, Srec) of a value (1 +N)m modulo N2, the sender and
the receiver can locally compute vsend ← DDLOG(send, Ssend) and vrec ← DDLOG(rec, Srec)which
form subtractive shares of m over ZN (i.e. vsend − vrec = m mod N). Furthermore, if m < N/2λ

(when viewed as an integer in {0, · · · , N − 1}), it holds with probability at least 1 − 2−λ that
vsend − vrec = m over the integers. The work of [OSY21] described an efficient implementation
of DDLOG, whose cost boils down to one inversion and one multiplication over ZN . Given this
procedure, our protocol proceeds as follows:

• Sender to receiver: pick a random coin ρ, and sends the Paillier-ElGamal ciphertext (C0, C1)←
(Gρ mod N,Hρ · (1 +N)∆ mod N2).

• Receiver to sender: pick n random coins (θ1, · · · , θn) and send the Pedersen commitments
(H1, · · · , Hn)← (Hzi ·Gθi mod N2)i≤n.

108 Efficient Designated-Verifier Zero-Knowledge Proofs

• Output: for i = 1 to n, the sender computes Gsend
i ← Hρ

i , and the receiver computes
Grec

i ← Czi
1 · C

θi
0 . Observe that

Grec
i = Czi

1 · C
θi
0 = Gρθi ·Hρzi(1 +N)∆·zi = Gsend

i · (1 +N)∆·zi mod N2.

Using DDLOG, both parties locally compute values (vsendi , vreci) such that vsendi − vreci =
b · ∆ mod N . Assuming that q < N/2λ,4 it holds that vsendi − vreci = b · ∆ over Z with
probability at least 1 − 1/2λ. Eventually, the sender outputs ai ← Gvsendi and the receiver
outputs αi ← Gvreci . Observe that

ai = Gvsendi = Gvreci +b·∆ = αi · rb mod p.

A balancing optimization. In the above protocol, the size of the public keys is quite unbalanced:
the sender public key contains a single Paillier-ElGamal ciphertext (in addition to (gt)t∈S′), while the
receiver public key contains n Pedersen commitments over ZN2 (where n is the wPRF key length,
e.g. n = 256 for our XOR-MAJ candidate, or n = 770 for our BIPSW candidate). We now describe
an optimization which reduces the receiver key size by a factor k, at the cost of increasing the
Paillier-ElGamal ciphertext by a factor k2. Taking k = O(n1/3), this yields a variant in which both
public keys contain O(n2/3) elements of ZN2 . We note that our balancing optimization also applies
to the public key PCF of [OSY21], thus enables reducing their public key size to O(n2/3).

The main idea of the optimization is to compress the receiver public key by replacing the Pedersen
commitments with a multi-Pedersen commitment. Fix a compression parameter k (which we assume
to divide n for simplicity) and public random elements (G,H1, · · · ,Hk) ∈ Zk+1

N2 . We let the sender
commits to z by batches of k values zi at once, as follows:

• Receiver to sender: pick n/k random coins (θ1, · · · , θn/k) and send the Pedersen commit-
ments (H1, · · · , Hn/k)← (Gθi+1 ·

∏k
j=1H

zj+k·i
j mod N2)0≤i<n/k.

Suppose the parties want to retrieve multiplicative shares of (1 + N)∆·zi mod N2. The main
observation is that this can be done using the randomness-reuse variant of Paillier-ElGamal, putting
(1 +N)∆ in the first “slot”: the sender picks a random coin ρ1 and computes

(C0, (C
j
1)j≤k)← (Gρ1 mod N,Hρ1

1 · (1 +N)∆,Hρ1
2 , · · · ,Hρ1

k mod N2).

Then, given this extended ciphertext and H1 = Gθ1 ·
∏k

j=1H
zj
j mod N2, the parties retrieve

multiplicative shares of (1 +N)∆·z1 by computing

Gsend
1 ← Hρ1

1 , Grec
1 ← Cθ1

0 ·
∏
j≤k

(Cj
1)

zj .

The above only yields shares of (1 + N)∆·z1 . To extract shares of (1 + N)∆·zj for j = 2, · · · , k,
the sender must proceed similarly as above, using extended Paillier-ElGamal ciphertexts, but this
time placing (1 + N)∆ in the j-th slot. In total, the sender computes k length-(k + 1) extended
ciphertexts, for a total of k elements of ZN and k2 elements of ZN2 (these k + k2 elements can be
reused across all n/k batches). The full sender public key is given below:

• Sender to receiver: pick random coins ρj for j = 1 to k, and constructs the extended
Paillier-ElGamal ciphertexts as follows for j = 1 to k:

Cj
0 ← Gρj mod N

(Cj,1
1 · · · , C

j,k
1)← (H

ρj
1 , · · · ,Hρj

j · (1 +N)∆, · · · ,Hρj
k) mod N2

4In practice, we take log q = 256 and logN = 3072.

4.2 DV-NIZK from Public-Key PCF-based OT 109

Efficiency. Without the balancing optimization, sender’s public key consists of |S′| elements of G,
one element of ZN , and one element of ZN2 , and receiver’s public key consists of n elements of ZN2 .
To provide concrete estimates, we use our XOR-MAJ parameter set with n = 256 and |S′| = 390.
We set λ = 128, log |G| = 2λ, and logN = 3072. With these parameters, the sender public key size
is 13.3kB, and the receiver public key size is 192kB. Using the balancing optimization, the public key
of the sender consists in |S′| elements of G, k element of ZN , and k2 element of ZN2 , and the public
key of the receiver consists in n/k elements of ZN2 . With the XOR-MAJ parameter set and using
k = 5, the sender key increases to 32.8kB while the receiver key is reduced to 38.4kB.

Regarding computation, the cost of deriving the PCF keys from the public and secret keys is
dominated by n+1 exponentiations moduloN2 and n exponentiations modulo p for the sender, and
2n exponentiations moduloN2 and n exponentiations modulo p for the receiver. Using the balancing
optimization, the number of exponentiations modulo N2 increases to n + k2 for the sender, and
decreases to n · (1 + 1/k) for the receiver. Using n = 256 and k = 5, this translates to respectively
281 and 307 exponentiations over ZN2 .

Using logN = 3072, an exponentiation modulo N2 takes of the order of 5ms on one core
a standard laptop, which translates to 1 ∼ 2 seconds of computation (note that this is a rough
back-of-the-envelope estimation, true estimates may vary). Observe that this can be easily sped up
using multiple cores, and that this is a one-time preprocessing phase to generate the shared PCF keys.
After generating the PCF keys once, the parties can directly start generating OT correlations. Also,
the computational efficiency can be significantly improved by sampling ρ and the θi’s as 256-bit
integers. This improves computation by one to two orders of magnitude, at the (reasonable) cost of
having to assume the security of the small-exponent indistinguishability assumption (see e.g. [CC18;
CKL+21] for discussions on this assumption and relations to other assumptions).

Concrete Instantiation of DV-NIZK

Following our PK-PCF construction, we define the language Lp for non-reusable DV-NIZK argument
as below

Lp :=
(
Gt, Ht(1 +N)r

′
;
(
hr

s
, (h′)r

s)
s∈S

)
where skp := (h, h′, r, t) and r := gr

′
q mod p.

To build a non-reusable DV-NIZK argument of knowledge, firstly we build a Σ-protocol for language
Lp then later using the construction of [PsV06] with the trapdoor dv.T as the list of sk which are
used in public-key encryption to obtain a (non-reusable) DV-NIZK scheme that satisfies adaptive
knowledge soundness, zero-knowledge.
For instantiation of strong PK-PCF, we use our PK-PCF construction plus the techinique [BCE+23]
that can convert weak PCF to strong PCF using PRF. We highlight our PK-PCF satisfies the strong
security about Supp which we showed directly from the proof security in full version(theorem 3
of [BCM+24]).

Chapter 5
FOLEAGE: F4OLEAGE-based MPC for
Boolean Circuits

In this chapter, we focus on secure computation of general Boolean circuits withmultiple parties in the
semi-honest setting. Our main contribution is F4OLEAGE, a novel F4-OLE-based protocol for secure
computation in the preprocessing model that significantly outperforms the state-of-the-art approach
in both the two-party and multi-party setting. We provide a detailed technical overview of our
results in Section 5.3. We describe our optimized PCG for OLEs over F4 in Section 5.4. In Section 5.5,
we describe our distributed seed generation protocol for PCG-based OLE over F4. In Section 5.6,
we show our parameter choice, report on our implementation and evaluate the performance of
our scheme. We present our addtional contribution about N -party MPC with preprocessing from
F4-OLEs in Section 5.7. An optimization for seed expansion is presented in Section 5.8.

Contents
5.1 Motivation and Related Works . 112
5.2 Detailed Contributions . 114
5.3 Technical Overview . 115

5.3.1 Background: Secure MPC from PCGs . 116
5.3.2 Constructing Programmable PCGs . 117
5.3.3 F2-triples from F4-triples . 119
5.3.4 Improved Protocol from F4-OLEs for N = 2 119
5.3.5 Fast Programmable PCG for F4-OLEs . 120
5.3.6 Distributed Seed Generation . 122

5.4 A Fast PCG for F4-OLEs . 124
5.4.1 PCGs from QA-SD Assumption . 124
5.4.2 PCGs over F4 from QA-SD Assumption 125
5.4.3 Optimizations . 128

5.5 Distributed Seed Generation . 131
5.5.1 A Ternary Distributed Point Function . 131
5.5.2 Distributed DPF Key Generation . 135

5.6 Implementation and Evaluation . 143
5.7 N-party MPC with Preprocessing from F4-OLEs 145

112 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

5.7.1 Secure Computation in the FcBT-Hybrid Model 145
5.7.2 Improved Protocol for N = 2 Parties . 147

5.8 Faster Seed Expansion from Hashing . 148
5.8.1 Faster Seed Expansion . 148
5.8.2 Application of OLE over F4 to Silent OT Extension 152

5.1 Motivation and Related Works
A secure multiparty computation (MPC) protocol for a public functionality f allows N parties
with private inputs (x1, · · · , xN) to securely compute f(x1, · · · , xN), while concealing all other
information about their private inputs to coalitions of corrupted parties. MPC was introduced in the
seminal work of Goldreich, Micali, and Wigderson [GMW87] (GMW), and has since led to a rich
body of work developing the foundations of MPC, and even practical open-source libraries [Kel20].

Two of the leading paradigms in secure computation are garbled circuits [Yao86] and secret-
sharing-based secure computation [GMW87]. The seminal GMW protocol is of the latter type. In a
secret-sharing-based MPC protocol, the parties hold shares of the inputs and iteratively compute the
circuit representing the function, gate-by-gate. Because addition gates can be computed locally by
the parties holding the input shares, only multiplication gates require interaction between the parties
to evaluate. As such, the major bottleneck of MPC protocols is due to the communication required
to evaluate the multiplication gates in a circuit. (Note that this is also true of the garbled circuit
approach where addition gates are “free” and only multiplication gates need to be garbled [KS08].)

However, a core advantage of secret-sharing-basedMPC, first identified in thework of Beaver [Bea92],
is that secure multiplications can be preprocessed in an input-independent precomputation phase. In
particular, the parties can securely generate additive shares of many “Beaver triples” (a, b, a · b) ∈ F3.
Then, for each multiplication gate that needs to be computed in the online phase, the parties can run
a fast information-theoretically secure multiplication protocol that consumes one Beaver triple and
involves communicating just two elements of F per party. This model of secure computation with
preprocessing forms the basis for modern MPC protocols due to the efficiency of the online phase.
However, this preprocessing paradigm only serves to push the inefficiency bottleneck of MPC to
the offline phase that consists of generating many Beaver triples. We briefly survey the different
techniques that have been developed in the last couple of decades for the efficient generation of
Beaver triples in an MPC setting.

Modern secure computation protocols. The traditional approach for securely generating Beaver
triples relies on Oblivious Transfers (OT) [Rab81; EGL82]: an N -party Beaver triple over F is
generated by letting each pair of parties execute log |F| oblivious transfers [Gil99], and thanks to
OT extension protocols [Bea96; IKN+03], generating a large number of OTs requires only cheap
symmetric-key operations. This OT-based approach is very competitive with a small number of
parties, but becomes very inefficient with many parties. Specifically, because each pair of parties
needs to perform OTs, the communication and computation costs are on the order of Ω(N2), which
quickly becomes impractical as N grows large.

Over the past decade, the practicality of secure computation has increased tremendously [DPS+12;
KOS16; Kel20; DNN+17; HOS+18; KPR18]. This is especially true in the setting of secure computation
of arithmetic circuits over large fields. Starting with the celebrated SPDZ protocol [DPS+12], a
sequence of works has developed fast protocols that use Ring-LWE-based somewhat homomorphic
encryption, or even linearly homomorphic encryption, to generate m Beaver triples with only

5.1 Motivation and Related Works 113

O(m ·N) communication and computation per triple. These approaches significantly improve over
the “naïve” Ω(m ·N2) cost of the OT-based approach. Over sufficiently large fields (e.g., larger than
2λ), when generating many triples, state-of-the-art protocols such as Overdrive [KPR18] achieve
very good concrete efficiency.

More recently, following the line of work on silent secure computation initiated in [BCG+18;
BCG+19b; BCG+19a], Boyle et al. [BCG+20b] have shown how to generate a large number m of
pseudorandom (as opposed to truly random) Beaver triples under the Ring-LPN assumption. Their
approach uses O(logm · N2) communication, followed solely by local computation, with good
concrete efficiency (the authors estimated a throughput of around 105 triples per second on one core
of a standard laptop). For sufficiently large values ofm, this is highly competitive with Overdrive.
However, both Overdrive and the existing PCG-based approach share a common restriction: they are
only usable over large fields.

Secure computation of Boolean circuits. In contrast to the secure computation of arithmetic
circuits over large fields, the fastest way to run N -party MPC protocols for Boolean circuits re-
mains the “naïve” method of generating many pairwise OTs, at a cost of Ω(m · N2) bits for m
Beaver triples. This is in contrast to the two-party setting, where two-party Beaver triples can
be generated very efficiently thanks to a recent line of work [BCG+18; BCG+19b; BCG+19a] on
silent OT extension. In silent OT extension, two parties can generatem Beaver triples using only
O(logm) communication. The state-of-the-art protocols in this area [CRR21; BCG+22; RRT23]
achieve impressive throughputs of several million Beaver triples per second on one core of a standard
laptop. Furthermore, the recent SoftSpoken OT extension protocol [Roy22] yields even faster OTs at
the cost of increasing communication. For example, SoftSpoken can generate nearly 30M OT/s on
localhost at the cost of increasing the communication to 64m bits to generate m Beaver triples;
other communication/computation tradeoffs are possible [Roy22, Table 1].1

The situation, however, is much less satisfying for the setting of secure computation of Boolean
circuits with a larger number of parties. Protocols such as SPDZ [DPS+12] and Overdrive [KPR18]
do not perform well when generating Beaver triples for Boolean circuits, even in the passive setting.
This is due to the high overhead of embedding F2 in an extension field compatible with the number
theoretic-transform used in efficient instantiations of the BGV encryption scheme [BGV14]. Fur-
thermore, silent OT extension techniques build on Pseudorandom Correlation Generators (PCGs),
which typically work only in the two-party setting [BCG+19b]. To handle more parties, one needs
the stronger notion of programmable PCG [BCG+20b], which, informally, allows partially specifying
parts of the generated correlation. Unfortunately, while efficient programmable PCGs over large
fields were introduced in [BCG+20b], building concretely efficient, programmable PCGs over F2

has remained elusive thus far, making N -party PCGs for F2 primarily of theoretical interest. The
state-of-the-art is the recent work of Bombar et al. [BCC+23], which generates Beaver triples over
any field Fq with q ≥ 3. However, Bombar et al. [BCC+23] leave analyzing the concrete efficiency
for future work.

In light of this state of affairs, to the best of our knowledge, the current most efficient approach for
N -party secure computation of Boolean circuits remains the classical OT-based approach. In a little
more detail, to generate each Beaver triple, each party Pi samples a random pair (ai, bi) of bits, and
each pair (Pi, Pj) of parties executes two oblivious transfer protocols to generate additive shares of
aibj and ajbi. Then, all parties aggregate their shares to obtain shares of

∑
i,j aibj = (

∑
i ai)·(

∑
j bj).

When generatingm Beaver triples, this approach requiresN ·(N−1)·m oblivious transfers in total (to
be compared with theO(N2 · logm) communication of [BCG+20b], or theO(N ·m) communication

1Note that we need two calls to the OT functionality to generate one Beaver triple.

114 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

of Overdrive [KPR18], for the case of arithmetic circuits over large fields). While there has been
tremendous progress in constructing efficient OT protocols [IKN+03; Roy22], even using silent
OT extension (which has the lower communication overhead) requires 3N · (N − 1) ·m bits of
communication (ignoring some o(m) terms). Using SoftSpoken OT [Roy22] instead, which appears
to be the most computationally efficient solution, and setting the “communication/computation
tradeoff” parameter k to k = 5, the communication increases to 32N · (N − 1) ·m bits. When the
number of parties grows, this soon becomes very inefficient.2

5.2 Detailed Contributions

In this chatpter, we focus on secure computation of general Boolean circuits with multiple parties
in the semi-honest setting. Our main contribution is F4OLEAGE, a novel F4-OLE-based protocol
for secure computation in the preprocessing model that significantly outperforms the state-of-the-
art approach in both the two-party and multi-party setting. In particular, F4OLEAGE enjoys much
lower communication in the preprocessing phase than all known alternatives and has a very low
computational overhead. We expect F4OLEAGE to be the fastest alternative for large enough circuits
on almost any realistic network setting, for any number of parties between two and several hundred.
F4OLEAGE builds upon recent results constructing efficient PCGs and introduces several protocol-
level, algorithmic-level, and implementation-level optimizations to make these PCG constructions
significant fast (see Section 5.6 for a performance evaluation).

In the two-party setting. (N = 2), F4OLEAGE enjoys a silent preprocessing (generating m
multiplication triples requires O(logm) communication), and significantly outperforms all previous
silent protocols. In particular, our implementation generates around 12.3 million Beaver triples
per second on one core of an Amazon c5.metal server. Compare this to the state-of-the-art
silent OT protocol RRT [RRT23] which generates 3.4 million Beaver triples per second with the
same setup. This makes RRT more than 3.5 times slower compared to F4OLEAGE. The fastest
non-silent OT protocol, SoftSpoken OT, generates around 26 million multiplication triples per second
on localhost in its fastest regime (using k = 2 [Roy22, Table 1]), while requiring around 128 ·m
bits of total communication. However, while our approach does achieve a blazing-fast throughput,
it has some limitations. In particular, the preprocessing phase of F4OLEAGE requires more rounds
(16 rounds instead of 3 for generating 26M triples compared to [Roy22]). Additionally, our seed
size is roughly 130× larger compared to [RRT23], and 2× larger compared to [BCG+20b]. This
makes F4OLEAGE less suitable for generating a small number of triples. Eventually, our protocols are
tailored to the generation of multiplication triples over F2 in the semi-honest setting: their efficiency
scales less favorably in other settings, such as generating string OTs or authenticated triples.

In the multi-party setting. (N > 2), F4OLEAGE achieves almost-silent preprocessing: to securely
compute a circuit with m AND gates, following a silent phase with O(N2 · logm) communication,
our preprocessing phase requires a single broadcast of N ·m bits (one bit per AND gate and per
party), and the online phase is the standard GMW protocol. As N grows, this represents a drastic
reduction in communication compared to the ∼ 3 ·N2m communication obtained when using silent
OT extension, or the ∼ 32 ·N2m communication obtained with SoftSpoken OT, while remaining
highly competitive in terms of computation.

2For a very large number of parties, the linear scaling in N of Overdrive should become favorable. However, after
private communication with the authors of Overdrive, the break-even point for communication seems to happen only for
values of N in the range of 400+, due to the high overhead of using BGV and embedding F2 elements.

5.3 Technical Overview 115

Communication localhost LAN WAN
Multi-party setting (N = 10)

SoftSpoken (k = 2) 134 GB 342s 1192s 12207s
SoftSpoken (k = 4) 67 GB 405s 596s 6104s
SoftSpoken (k = 8) 34 GB 1900s 1900s 3052s

∗298s
RRT 6.3 GB 2619s 2619s 2619s

∗50.3s ∗515s
F4OLEAGE 0.7 GB 1463s 1463s 1463s

∗5.6s ∗57.9s

Two-party setting (N = 2)

SoftSpoken (k = 2) 15 GB 38s 119s 1221s
SoftSpoken (k = 4) 7.5 GB 45s 60s 610s
SoftSpoken (k = 8) 3.7 GB 211s 211s 211s
RRT 258 KB 292s 292s 292s
F4OLEAGE 33.5 MB 81s 81s 81s

Table 5.1: Comparison of state-of-the-art protocols to generateN -party Beaver triples overF2 forN =
10 and N = 2 parties. The localhost column reports the runtimes (ignoring communication)
for generating 109 triples. All protocols run on one core of AWS c5.metal (3.4GHz CPU); all
runtimes averaged across ten trials.

Comparison with the state of the art. In Table 5.1, we provide a comparison between F4OLEAGE,
SoftSpoken, and RRT, for N = 10 and N = 2 parties. In the multiparty setting, due to the very low
bandwidth requirement of F4OLEAGE, we observe that computation is systematically the bottleneck
when evaluated on one core of a commodity server. This indicates that F4OLEAGE is likely to stand
out even more whenever more computational power is available, e.g., when evaluated in parallel on
multiple cores.

The numbers in Table 5.1 have been computed using the running time T measured for generating
316 OLEs (using the noise parameter t = 27 and c = 3), and estimating the per-party cost to generate
109 N -party Beaver triples as 2 · (N − 1) · T · (109/316). When N = 2, the cost is estimated as
T · (109/316), accounting for the factor-2 saving tailored to the 2-party setting. For communication,
we computed an estimate of C = 13MB of communication for our distributed protocol for generating
a seed for 318 OLEs. While one could in principle directly generate a seed that stretches to 109 OLEs,
this would significantly slow down the computation as the 109 OLEs must be expanded all at once,
and would not fit in memory. Hence, we estimate the communication as 2 · (N − 1) · (318/109) · C
for generating 109 N -party Beaver triples (as 318 OLEs is the maximum expansion size we could fit
in the memory), and an additional 109 bits of communication per party (in the setting N > 2).

5.3 Technical Overview
In this chapter, we provide a detailed description of our results and themain technical ideas underlying
them. In Section 5.3.1, we provide background on secure multi-party computation realized from
PCGs for OLE correlations. In Section 5.3.2 we describe the PCG construction of [BCC+23], which
forms the basis for our preprocessing protocol. In Section 5.3.3, we describe our idea for converting

116 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

F4 triples into F2 triples, which we tailor to the two-party case in Section 5.3.4. In Section 5.3.5, we
describe our optimized PCG construction. In Section 5.3.6, we explain how we can obtain an efficient
distributed seed generation protocol for our PCG construction.

Notations. Unless otherwise stated, an N -party linear secret shares of a value v is denoted [[v]] =
([[v]]1, . . . , [[v]]N), where the i-th party obtains share [[v]]i. To disambiguate shares over F4 and shares
over F2, we denote the field size with a superscript, i.e., [[·]]4 and [[·]]2, respectively. We identify F4

with F2[X]/(X2 + X + 1) and let θ denote a primitive root of X2 + X + 1. Given an element
x ∈ F4, we write x(0) and x(1) to denote the F2-coefficients of x viewed as a polynomial over
F2[X]/(X2 +X + 1); that is, x = x(0) + θ · x(1).

5.3.1 Background: Secure MPC from PCGs

We start by describing prior approaches to realizing MPC in the preprocessing model from PCGs for
OLE correlations.

PCGs for the OLE correlation. Our starting point is the template for generating N -party pseu-
dorandom Beaver triples put forth by Boyle et al. [BCG+20b]. At the heart of their framework is
the use of a programmable PCG [BCG+20b] for the OLE correlation. Concretely, a PCG for a target
correlation C (i.e., a distribution over pairs of strings) is a pair of algorithms (PCG.Gen,PCG.Eval)
such that

• PCG.Gen generates a pair of succinct keys (k0, k1) jointly encoding the target correlation, and

• PCG.Expand(σ, kσ) produces a string Rσ corresponding to party σ’s secret share of the target
correlation.

At a high level, a PCG must satisfy two properties: (1) pseudorandomness (or correctness) which
states that (R0, R1) must be indistinguishable from a random sample from C , and (2) security
which states that Rσ should appear random conditioned on satisfying the target correlation with
R1−σ = PCG.Expand(1− σ, k1−σ) even given k1−σ , for σ ∈ {0, 1}.

We focus on the OLE correlation over a finite field F. For a length-m OLE correlation, the string
R0 (which we call the sender output) is a list of m tuples (ui, vi)i≤m ∈ (F2)m, and the string R1

(which we call the receiver output) is a list ofm pairs (xi, wi)i≤m ∈ (F2)m such that wi = ui ·xi+vi
for every i. Observe that, we can equivalently view vi and −wi as additive shares of ui · xi, which
we will denote as [[ui · xi]]. Informally, security for the OLE correlation amounts to showing that the
following two properties hold:

• Sender security: from the viewpoint of the receiver (who has k1 and generates (xi, wi)), the
distribution of (ui, vi) is computationally indistinguishable from the distribution of (ui, wi −
ui · xi), for a uniformly random ui ←$ F.

• Receiver security: from the viewpoint of the sender (who has k0), the distribution of each xi
is computationally indistinguishable from a random field element.

Going from OLE to Beaver triples. As shown in [BCG+19b], given a PCG for the OLE correlation
(or a PCG for OLE for short), two parties can generate many pseudorandom Beaver triples over F as
follows. First, the parties compute PCG.Gen via a two-party secure computation protocol to obtain
PCG keys k0 and k1, respectively. Then, using PCG.Expand, the two parties locally obtain many
correlations of the form (ui, [[uixi]]0) and (xi, [[uixi]]1), respectively. Given two suchOLE correlations,
where one party has (u0, u1, [[u0x0]]0, [[u1x1]]0) and the other party has (x0, x1, [[u0x0]]1, [[u1x1]]1),

5.3 Technical Overview 117

the two parties can locally derive one Beaver triple of the form ([[a]], [[b]], [[ab]]) by computing:

([[u0 + x1]]

[[a]]

, [[u1 + x0]]

[[b]]

, [[u0x0 + u1x1]] + u0u1 + x0x1 = [[(u0 + x1) · (u1 + x0)]]

[[ab]]

).

In a little more detail, the sender computes their share of the Beaver triple as (u0, u1, [[u0x0]]0 +
[[u1x1]]0+u0u1) and the receiver computes their share as (x1, x0, [[u0x0]]1+[[u1x1]]1+x0x1). While
this technique works well in the two-party setting, in the multi-party setting, things are not so
simple.

Going from two parties to many parties. As first discussed by Boyle et al.[BCG+20b], to generate
N -party Beaver triples using a PCG for OLE, the parties need to ensure consistency among the
OLE correlations generated by each pair of parties. That is, to generate one multiplication triple
([[a]], [[b]], [[ab]]), we need each pair of parties (Pi, Pj) to hold respective values (ai, bi) and (aj , bj)
(viewed as an individual share of a and b), together with two-party shares [[aibj]] and [[ajbi]]. Then,
all parties can combine their shares to get

[[(
∑

i ai) · (
∑

j bj)]] =
∑

i ̸=j [[aibj]] +
∑

i aibi.

Observe that this requires party Pi to have OLEs of the form (ai, [[aiaj]]i), with every other party Pj

(who in turn has share (aj , [[aiaj]]j)), where Pj ’s value ai remains the same across all OLEs. This is
precisely what the notion of a programmable PCG for OLE achieves: it allows the parties to specify
seeds (ρ0, ρ1) such that PCG.Gen(ρ0, ρ1) outputs keys k0, k1 that, informally speaking, have all the
pseudorandom (ai, bi) deterministically generated from the seeds ρ0 and ρ1 respectively (while still
maintaining the required security properties). By reusing the same seeds across executions with
multiple parties, the parties can ensure the required consistency across their outputs.

5.3.2 Constructing Programmable PCGs

In addition to defining the notion of programmable PCGs, the work of Boyle et al. [BCG+19b;
BCG+20b] introduced a construction from a variant of the LPN assumption over rings. At a high
level, the ring-LPN assumption they introduce states that (a, as + e) is hard to distinguish from
(a, b), where a, b are random polynomials from a suitable ringR = Fq[X]/(P (X)), where P splits
into deg(P) linear factors and s, e are random sparse polynomials from R. The construction of
Boyle et al. proceeds by generating a single large pseudorandom OLE correlation over a polynomial
ring R = Fq[X]/(P (X)), assuming the hardness of the ring-LPN assumption over R. When P
splits into D = deg(P) linear factors, the Chinese Remainder Theorem makes it possible to convert
this large OLE correlation over R into D OLE correlations over Fq (by reducing it modulo each
of the factors of P). Unfortunately, the condition that P splits requires |Fq| ≥ D, which restricts
the construction to only work over large fields. This makes the resulting OLE correlations only
suitable for generating Beaver triples over Fq , which limits their applications. Moreover, other
existing efficient (non-PCG-based) protocols for generating Beaver triples are also restricted to large
fields [DPS+12; KPR18]. However, for the Boolean circuit case, the state-of-the-art remains the basic
OT-based approach originally proposed in the GMW protocol.

A programmable PCG for F4-OLE. The large-field restriction of the Boyle et al.’s PCG construction
was recently overcome by Bombar et al. [BCC+23]. At a high-level, the authors of [BCC+23] manage
to replace the polynomial ringR by a suitable Abelian group algebra F[G] (that is, the set of formal
sums

∑
g∈G agg for ag ∈ F, where G is an Abelian group; endowed with the convolution product),

which identifies to some ring of multivariate polynomials. Moreover, they show that an appropriate

118 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

choice of Abelian group algebra can simultaneously satisfy the following properties, for almost every
choice of finite field F:

1. F[G] is isomorphic to many copies of F (note that this property is necessary to convert an OLE
correlation over F[G] into many OLEs over F),

2. The assumption that (a, as + e) is indistinguishable from random over F[G] × F[G], with
a ←$ F[G] and (s, e) two random sparse elements of F[G] (with respect to the canonical
notion of sparsity over the group algebra, i.e., sparse formal sums

∑
g∈G agg) is a plausible

assumption,

3. Operations over F[G] can be computed efficiently using a Fast Fourier Transform (FFT) algo-
rithm[Obe07; BCC+23].

The second property is a new variant of the syndrome decoding (or LPN) assumption which
the authors called Quasi-Abelian Syndrome Decoding. It naturally extends to a “module”-variant, i.e.
the indistinguishability of pairs (a, ⟨a, s⟩+ e) where s and e are drawn from a sparse distribution,
and generalizes both the quasi-cyclic syndrome decoding (when G is a cyclic group), and the LPN
or syndrome decoding assumption (when G = {1}). The work of Bombar et al. [BCC+23] also
provides extensive support for this assumption by showing that it resists all linear attacks, a class of
attacks capturing the most known attacks on the LPN assumption and its variants, and proposes a
set of parameters resisting all concrete attacks known at that time. The combination of these three
properties allowed them to build an efficient programmable PCG for OLEs over F.

Despite the progress made in [BCC+23], their programmable PCG construction is limited in
that it applies only to generating OLE correlations over all finite fields F except for F2. This stems
from the fact that there does not exist any group G such that F2[G] is isomorphic to Fn

2 for n > 1
(see [BCC+23, Theorem 47]). In contrast, the case of F2, is precisely the case that we are interested in
when considering Boolean circuits, which require generating Beaver triples over F2.

Additionally, the concrete efficiency of an FFT computed over the group algebra remains unclear,
since Bombar et al. left estimating the performance of FFTs on F[G] for future work. As such,
the concrete efficiency of their programmable PCG construction is unknown, making it difficult to
determine whether or not it is sufficiently efficient to be applied in practical applications (all other
components of their construction consist of standard tools used in the PCG literature, which are
known to have concretely efficient implementations).

Our contribution. Looking ahead, our main contribution is to build upon the work of Bombar et al.
through a number of simple yet powerful observations that allow us to arrive at an efficient PCG for
Beaver triples, suitable for use in secure multi-party computation of Boolean circuits.

• First, we show that we can use their programmable PCG for generating OLEs over F4 to
generate multiplication triples over F2, sidestepping the “F2 barrier” of their PCG construction,
at the cost of a single bit of communication per triple and per party in the preprocessing phase,
or even without any communication when N = 2.

• Second, we introduce a number of concrete optimizations to the PCG construction of Bombar
et al. [BCC+23] that are tailored to the special case of F = F4, which gives us an incredibly
efficient programmable PCG over F4. Compared with the fastest previous programmable PCGs
of [BCG+20b], our optimized implementation shows that our construction is two orders of
magnitude faster.

In the next few subsections, we provide more details on the above contributions.

5.3 Technical Overview 119

5.3.3 F2-triples from F4-triples

Since F4 is an extension field of F2, a Boolean circuit can be viewed as an F4-arithmetic circuit.
Hence, using an OLE correlation over F4 to construct N -party Beaver triples over F4 directly yields
an MPC protocol for Boolean circuits in the preprocessing model via the GMW template [GMW87].
Unfortunately, compared to using F2-Beaver triples, the communication in the online phase is doubled,
because each party has to send two elements of F4 per AND gate, hence 4 bits instead of 2 with
GMW.

Our core observation is that one can make much better use of these N -party multiplication
triples over F4: we show how to convert an F4-multiplication triple into an F2-multiplication triple
using a single bit of communication per party. Once converted into F2-triples, these triples can be
used within the standard GMW protocol that communicates two bits per party and per AND gate
in the online phase. To explain the observation, let ([[a]]4, [[b]]4, [[ab]]4) be a Beaver triple over F4.
Writing x = x(0) + θ · x(1) for any x ∈ F4, with θ a root of the polynomial X2 +X + 1 (hence
θ2 = θ + 1), we have

a · b =a(0)b(0) + a(1)b(1) + θ · (a(0)b(1) + a(1)b(0) + a(1)b(1))

=⇒ (ab)(0) = a(0)b(0) + a(1)b(1).

Now, assume that the parties reconstruct b(1), which can be done using a single bit of communi-
cation per party from their shares [[b]]4 = [[b(0)]]2 + θ · [[b(1)]]2. Given b(1), the parties can locally
compute shares of a(0)b(0) as follows:

[[a(0)b(0)]]2 = [[ab]]4(0) + b(1) · [[a]]4(1).

Therefore, all parties output ([[a(0)]]2, [[b(0)]]2, [[ab]]4(0) + b(1) · [[a]]4(1)), which forms a valid
Beaver triple over F2. Security is straightforward: the only communication between the parties is
the reconstruction of b(1), which is a uniformly random bit independent of a(0), b(0). From there,
one immediately gets an improved protocol in the preprocessing model: in the preprocessing phase,
given one F4-Beaver triple for each AND gate of the circuit, the parties broadcast one bit per gate,
and then locally derive the F2-Beaver triples. In the online phase, the parties run the standard GMW
protocol.]]

5.3.4 Improved Protocol from F4-OLEs for N = 2

In the setting of N = 2 parties, we obtain a much more efficient alternative: we observe that two
parties can directly convert a single OLE over F4 into a Beaver triple over F2. (In contrast, recall
that the standard approach requires two oblivious transfers for each triple.) We consider two parties,
Alice and Bob, holding respectively (a, [[ab]]4A) and (b, [[ab]]4B) for a and b ∈ F4. We have

a · b = [[ab]]4A(0) + [[ab]]4B(0) + θ · ([[ab]]4A(1) + [[ab]]4B(1))

= (a(0)b(0) + a(1)b(1)) + θ · (a(0)b(1) + a(1)b(0) + a(1)b(1)),

where θ is the primitive root of X2 +X + 1. Considering only the (a · b)(0) term from the above
equation (i.e., the parts not multiplied by θ), we get that

(a · b)(0) = [[ab]]4A(0) + [[ab]]4B(0) = a(0)b(0) + a(1)b(1), and therefore,

a(0)a(1) + [[ab]]4A(0)

known by A

+ b(0)b(1) + [[ab]]4B(0)

known by B

= (a(0) + b(1))

shared by A,B

· (a(1) + b(0))

shared by A,B

.

120 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

Above, the values a(0)a(1) + [[ab]]4A(0) (known by Alice) and b(0)b(1) + [[ab]]4B(0) (known by
Bob) form additive shares of the product (a(0) + b(1)) · (a(1) + b(0)), which Alice and Bob hold
additive shares of. It is also easy to check that if the input is a random F4-OLE, the output is a random
multiplication triple over F2. Therefore, following the local conversion procedure outlined above,
Alice and Bob can transform a random F4-OLE instance into a random Beaver over F2 without
having to communicate. We refer the reader to Section 5.7 of the Supplementary material for the
formal statement of this optimization.

5.3.5 Fast Programmable PCG for F4-OLEs

In light of the above observations, the only missing piece of the puzzle is an efficient way of generating
a large number of F4-OLEs. In the N > 2 setting, if the OLEs are additionally programmable, the
parties can afterward locally convert N · (N − 1) F4-OLE instances into an F4-Beaver triples.

Here, we build on the recent general programmable PCG construction of [BCC+23]. Because we
are targeting OLEs over F4, we set the group G to Fn

3 , and the underlying group algebra becomes
isomorphic to

F4[G] ≃ F4[X1, . . . , Xn]/(X
3
1 − 1, . . . , X3

n − 1) ≃ F3n

4 .

Before delving into the optimizations we develop for their construction, we describe the high-
level ideas and main building blocks behind the PCG construction of Bombar et al. [BCC+23] when
instantiated over F4.
The PCG construction of Bombar et al. As with previous constructions of PCGs [BCG+18;
BCG+19b], the construction of Bombar et al. uses Distributed Point Functions (DPF) [BGI15; BGI16;
GI14] as a core building block. Informally, a DPF with domain [D] allows a dealer to succinctly secret
share a unit vector over [D]. The most efficient DPFs have shares of size roughly λ · logD [BGI16],
for some security parameter λ, and the cost of decompressing the shares is dominated by D calls to
a length-doubling pseudorandom generator.
Public parameters. For a fixed compression factor c (typically a small constant, e.g., c = 3) and noise
parameter t (e.g., t = 27), the public parameters contain a length-c vector a of n-variate polynomials.
Distributing PCG seeds. In their construction, PCG.Gen does the following:

• it samples two length-c vectors (e0, e1) of t-sparse polynomials over F4[G];

• outputs keys (k0, k1) that contain e0 and e1, respectively, as well as succinct shares of e0 ⊗ e1,
encoded using a DPF.

The tensor product e0 ⊗ e1 contains c2 polynomials, each with at most t2 nonzero coordinates.
Hence, the vectors of coefficients of all polynomials in e0 ⊗ e1 can be succinctly secret shared using
(ct)2 DPFs with domain 3n, which requires roughly (ct)2 · λ log(3n) bits using the state-of-the-art
DPF constructions [BGI15; BGI16].3

Generating correlations. To output a vector of OLE correlations, PCG.Eval proceeds as follows for
party 0 (the evaluation for party 1 is similar):

• evaluate all the DPFs to obtain a secret share of [[e0 ⊗ e1]]0;

• set x0 ← ⟨a, e0⟩ and z0 ← ⟨a⊗ a, [[e0 ⊗ e1]]0⟩; ▷ Note: z0 = [[⟨a⊗ a, e0 ⊗ e1⟩]]0

• using the isomorphism F4[G] ≃ F3n
4 , project (x0, z0) ∈ F4[G]2 onto 3n pairs (xi0, zi0) of

elements of F4.
3Using noise vector with a regular structure, the domain size of the DPFs can be reduced to 3n/t.

5.3 Technical Overview 121

Above, the projection amounts to evaluating themultivariate polynomials overF4[X1, . . . , Xn]/(X
3
1−

1, . . . , X3
n − 1) on the 3n tuples of elements of (F×

4)
n. Observe that

z0 + z1 = ⟨a⊗ a, [[e0 ⊗ e1]]0⟩+ ⟨a⊗ a, [[e0 ⊗ e1]]1⟩
= ⟨a⊗ a, e0 ⊗ e1⟩ = ⟨a, e0⟩ · ⟨a, e1⟩ = x0 · x1.

Since the isomorphism preserves additions and multiplications, it follows that all pairs (xi0, zi0)
and (xi1, z

i
1) form OLEs over F4. Security boils down to the Quasi-Abelian Syndrome Decoding

assumption (QA-SD) [BCC+23], which states (informally) that given the random vector a, the element
⟨a, e⟩ + e0 (where (e0, e) are formed by random sparse polynomials) is indistinguishable from a
random element of F4[G].

We now describe several observations that we make about their construction and how these
observations allow us to significantly optimize the concrete efficiency of the PCG. While simple in
retrospect, these observations allow us to turn a theoretical construction into a concretely efficient
PCG for F4-OLEs (see Section 5.6 for our implementation and evaluation).

Early termination. The DPF construction of [BGI16] generates shares of a unit vector using a
construction à la GGM [GGM19], generating a full binary tree of PRG evaluations starting from a
root seed. The children of each node are computed by evaluating a length-doubling PRG on the node,
and then adding some correction words. In this construction, each leaf of the tree is a λ-bit string
(where typically λ = 128). In contrast, we wish to share unit vectors over F4. Hence, we can apply
the early termination technique from [BGI16] that shaves several levels of PRG expansions. With
early termination, to obtain a D = 2d-long vector over F4, we use a tree of depth 2D/λ = 2d−6

(using λ = 128) and parse each of the 128-bit leaves as a 64-tuple of F4-elements. This immediately
yields a 64-fold runtime improvement for each of the DPFs required in the PCG construction.

We note that while other constructions share a similar blueprint to the construction of Bombar
et al., and in particular also require evaluating many DPFs under-the-hood, this early termination
technique does not apply to them. The reason is that in silent OT extension protocols [BCG+19b;
BCG+19a; CRR21; BCG+22; RRT23], the DPFs are used to compress secret shares of∆ · e, where∆ is
a 128-bit element from a suitable extension field, and in the previous PCG construction of [BCG+20b],
the OLEs can only be generated over a large field F (chosen equal to |F| ≈ 2λ in their implementation).
As such, early termination optimization appears to apply exclusively when specializing the PCG
of [BCC+23] to work over small fields.

Using a single multi-evaluation step. Computing ⟨a⊗ a, [[e0 ⊗ e1]]b⟩ (for b = 0, 1) requires c2
polynomial multiplications. Fast polynomial multiplication is typically done using a multi-evaluation
(i.e., an FFT) followed by a local product and an interpolation (i.e., an inverse FFT).

The above produces a single OLE over F4[G]. When the end goal is to obtain OLEs over F4,
the result is projected back onto F3n

4 using a multi-evaluation. In this case, we show that we can
reduce the sequence multi-evaluation→ interpolation→ multi-evaluation down to just a single
multi-evaluation step. Concretely:

• Given that a is a random vector of polynomials (and part of the public parameters), it can
directly be generated as c random length-3n vectors over Fn

4 , corresponding to the vectors of
the multi-evaluations of a over all n-tuples in (F×

4)
n.

• The multi-evaluation of a⊗a can be computed once for all using pairwise products of elements
of (the multi-evaluation of) a, and included in the public parameters.

• Computing the multi-evaluation of ⟨a ⊗ a, [[e0 ⊗ e1]]b⟩ amounts to computing the multi-
evaluation of [[e0 ⊗ e1]]b followed by component-wise inner products.

122 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

It follows that after expanding the shares [[e0 ⊗ e1]]b, the cost of PCG.Expand is then dominated
by c2 instances of a multi-evaluation (i.e., an FFT). However, upon slightly closer inspection, we
observe that it actually suffices to compute c(c+ 1)/2 FFTs (since the terms ei0e

j
1 and e

j
0e

i
1 share the

same “coefficient” aiaj in ⟨a ⊗ a, e0 ⊗ e1⟩, hence the FFT can be evaluated on terms ei0e
j
1 + ej0e

i
1

directly).

Blazing fast FFT. Our next observation is that the FFT over the group algebra F4[G] is actually
extremely efficient. Indeed, given a polynomial P (X1, · · · , Xn), one can rewrite P as

P0(X1, · · · , Xn−1) + XnP1(X1, · · · , Xn−1) + X2
nP2(X1, · · · , Xn−1).

Let us denote FFT(P, n) the functionality that evaluates P on all n-tuples over (F×
4)

n, and outputs
a multi-evaluation vector v. By the above formula, computing FFT(P, n) reduces to

• computing vi ← FFT(Pi, n− 1) for each i ∈ {0, 1, 2}, and

• setting v← (v0 + v1 + v2 || v0 + θv1 + (θ + 1)v2 || v0 + (θ + 1)v1 + θv2).
Denoting C(n) the cost of running FFT(P, n), we therefore have C(n) = 3 · C(n− 1) + ℓ · 3n−1,
where ℓ denotes the number of vector operations (naïvely, 6 additions of vectors and 4 scalar-vector
products—but some additions and products can be reused). This yields a cost of C(n) = n · ℓ · 3n−1,
where all operations are very fast: either additions of F4-vectors or multiplications by θ. Looking
ahead, our implementation and evaluation (Section 5.6) confirm that, even with the straightforward
recursive algorithm, the FFT results in minimal overhead compared to the cost of the DPFs.4

Stepping back: comparison with silent OT extension. To give an intuition about the efficiency
of this construction, we provide a brief comparison with constructions of silent OT extension. In
short, to get (say) 3n OTs, these constructions run c · t DPFs on a domain of size 3n/t, followed by a
multiplication with a compressive mapping. In the most efficient silent OT extension protocol to
date [RRT23], this compressive mapping requires computing 21 · c · 3n XORs, followed by 3n XORs
of random size-21 subsets of the bits of the resulting vector. Due to the overhead of many random
memory accesses, the cost of computing this mapping dominates the overall runtime. In contrast,
we need (c · t)2 DPFs with domain size 3n/t, but get a 64× speedup from the early termination
optimization. The cost of our DPFs should be essentially on par with that of [RRT23]. However,
the FFT cost in our construction is largely dominated by the cost of the DPFs. Therefore, we expect
(and this is confirmed by our implementation) that this PCG should produce F4-OLEs at a much
faster rate compared with the rate at which [RRT23] produces OTs. In the two-party setting, when
the goal is to generate Beaver triples over F2, we get an additional 2× speedup from the technique
of Section 5.3.4, as we generate one triple from one F4-OLE (whereas [RRT23] requires two OTs).
We provide an optimized implementation of our scheme and evaluate how it compares to previous
works in Section 5.6. Our implementation is about 6× faster than the state of the art [RRT23].

5.3.6 Distributed Seed Generation

So far, we have only discussed the cost of expanding the PCG keys (k0, k1). To obtain a full-fledged
secure computation protocol, we need an efficient way for the parties to securely evaluate PCG.Gen
procedure in a distributed fashion. In the following, as in all previous works on PCGs [BCG+19b;
BCG+19a; BCG+20b; BCG+20a; CRR21; BCG+22; BCC+23; CD23], we assume that the noise follows
a regular distribution. That is, a noise vector e is a vector of c polynomials (e1, · · · ec), where each

4Our implementation also exploits vectorized operations to perform a batch of multiple FFTs for essentially the cost of
one, which further reduces the impact of FFTs on the overall runtime.

5.3 Technical Overview 123

polynomial ei is regular: its coordinates are divided into t block of (approximately) equal length
3n/t, and it has a single nonzero coefficient in each block. For any integer h, let [h] denote the
set {1, · · · , h}. The previous work of [BCG+20b] outlined the following methodology to securely
distribute PCG seeds for generating D OLEs (in our context, D = 3n):

• Sampling the noise vectors. Each party Pb generates its noise vector eb locally, by sam-
pling c t-sparse regular polynomials. We write eb = (e1b , · · · , ecb). For each i ∈ [c], we let
(pib,1, · · · , pib,t) ∈ [3n/t]t denote the t positions of the nonzero entries in eib, and (vib,1, · · · , vib,t) ∈
Ft
4 denote the value of these nonzero coefficients.

• Sharing the positions and values. For every i0, i1 ∈ [c], for every j0, j1 ∈ [t], the parties run
a distributed protocol with respective inputs pi00,j0 and pi11,j1 (i.e., the position of the j0-th and
j1-th nonzero coefficients in ei00 and ei11 , respectively) which securely computes bitwise shares
of the (j0 + j1)-th nonzero coefficient of ei00 e

i1
1 . In parallel, they also run a distributed protocol

with respective inputs vi00,j0 and v
i1
1,j1

(the corresponding values of the nonzero coefficients) and
securely compute bitwise shares of vi00,j0 · v

i1
1,j1

(the value of the (j0+ j1)-th nonzero coefficient
of ei00 e

i1
1).

• Distributing the DPF keys. For every i0, i1 ∈ [c], for every j0, j1 ∈ [t], the parties run
the Doerner-shelat protocol [Ds17] with their bitwise shares of the position and value to
securely obtain DPF keys forming succinct shares of the point function fα,β which evaluates
to β := vi00,j0 · v

i1
1,j1

on the index α of the (j0 + j1)-th nonzero coefficient of ei00 e
i1
1 , and to 0 on

all other inputs.

Communication-wise, the Doerner-shelat protocol requires 2 · log(D/t) oblivious transfers for
each DPF, for a total of 2(ct)2 log(D/t) oblivious transfers. Distributing the shares of the coefficients
vi00,j0 ·v

i1
1,j1

is relatively straightforward: it involves two OLEs over F4 for each of the (ct2) coefficients.
As in [BCG+20b], these OLEs can be obtained at aminimal cost by running the PCG in a “bootstrapping
mode”: whenever two parties use the PCG to generateD F4-OLEs, they can instead use a marginally
larger instance to generate D + (ct)2 F4-OLE, and store the (ct)2 extra OLEs for use in the next
distributed PCG seed generation.

In the work of Boyle et al. [BCG+20b], an important overhead comes from the (ct)2 instances of
a distributed protocol to generate bitwise shares of the noise positions: each such instance requires
securely running a Boolean adder to compute, from the bit decomposition of pi00,j0 and pi11,j1 , the bit
decomposition of the position of the corresponding entry in ei00 e

i1
1 . In the construction of [BCG+20b],

this contributes to a large portion of the (communication and computation) overhead of the seed
distribution procedure: about half of the communication, computation, and rounds of the full protocol.

An improved seed distribution from ternary DPFs. We now introduce an optimization that
removes the need to distribute shares of noise positions altogether by working directly in the ternary
basis. Our improved protocol is tailored to the setting of noise vectors with components over
F4[G] = F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3

n − 1). Observe that every monomial over F4[G] can be
written as Xp :=

∏n
i=1X

pi
i , where p = (p1, . . . , pn) ∈ Fn

3 . Therefore, we can uniquely identify
the position of the coefficient cp of a monomialXp with the F3-vector p ∈ Fn

3 . Now, consider the
product of two polynomials e0, e1 known by P0 and P1, respectively. Let p0 ∈ Fn

3 be the position of
a nonzero entry in e0, and p1 ∈ Fn

3 be the position of a nonzero entry in e1. Then, the corresponding
nonzero entry in e0 · e1 is the coefficient of the monomial Xp0 ·Xp1 = Xp0+p1 mod 3. That is, the
corresponding nonzero position in e0e1 is exactly p0 + p1 (where the sum is taken modulo 3). In
other words, the two parties already hold shares of the noise position in e0e1—but over the ternary

124 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

basis!
Unfortunately, the Doerner-shelat protocol requires the parties to hold binary shares of the

position, because its binary decomposition corresponds to the path from the root to the leaf in the
(binary) GGM tree underlying the DPF construction of [BGI16; BGI15]. To remedy this situation, we
modify the underlying DPF construction to use a ternary tree. That is, the full tree is obtained by
computing the three children of a node by evaluating a length-tripling PRG G : {0, 1}λ → {0, 1}3λ
on the node value. Adapting the DPF construction of [BGI15; BGI16] to this setting is relatively simple
(though the security analysis becomes slightly more tedious, especially when adapting the Doerner-
shelat protocol to work over a ternary basis), and requires increasing the number of correction words
from 1 to 3 per level of the tree.5 With this change, the path to a leaf is given directly by the leaf
position written as a F3-vector. To securely generate the keys of this modified DPF, we adapt the
Doerner-shelat protocol. Our adaptation requires two 1-out-of-3 oblivious transfers per level (instead
of two 1-out-of-2 OTs as in [Ds17]), for the log3(D/t) levels of the ternary DPF tree. In summary,
we obtain a distributed seed generation protocol with the following pros-and-cons when compared
to the original approach of [BCG+20b]:

+ The parties “natively” hold shares of the nonzero positions and do not have to run a secure
protocol to compute them. In the protocol of Boyle et al. [BCG+20b], this step required
2(ct)2 · log(D/t) oblivious transfers in log(D/t) rounds (i.e., half of the total number of
rounds and OTs).

− The modified Doerner-shelat requires 2(ct)2 log3(D/t) 1-out-of-3 OTs of 3λ-bit strings in-
stead of 2(ct)2 log2(D/t) 1-out-of-2 OTs of 2λ-bit strings, which represents slightly more
communication and computation.

− Due to the use of a ternary DPF, which has more correction words, the PCG seed size is slightly
increased, by a factor ≈ 1.5.

+ Expanding the PCG seeds becomes about 20% faster because the total number of PRG eval-
uations is reduced when computing a full ternary tree compared to a full binary tree with a
similar number of leaves.

+ The number of rounds of the Doerner-shelat protocol is also reduced, from log2(D/t) to
log3(D/t), by having a more shallow tree.

5.4 A Fast PCG for F4-OLEs
In this section, we present the construction ofQA-SDOLE over F4 (Figure 5.3) following optimizations
via early termination and fast evaluation of polynomials for FFT. We first recall how to construct
PCG-based OLE from the QA-SD assumption as below.

5.4.1 PCGs from QA-SD Assumption

In this section, we recall the construction of PCGs from the Quasi-Abelian Syndrome Decoding
assumption (QA-SD) which was introduced in [BCC+23], and properly defined in Chapter 2. We
start with a short overview of the PCG construction over Fq of Bombar et al. [BCC+23]. Let

5Unfortunately, in the ternary tree construction, using the optimization described in [BGI16] for removing one extra
correction word does not immediately apply. We leave open the problem of finding a similar optimization in the ternary
case.

5.4 A Fast PCG for F4-OLEs 125

R = Fq[G] =
{∑

g∈G agg | ag ∈ Fq

}
, with G an abelian group. We refer to Rt as the set of ring

elements ofR of weight at most t. The goal is to construct a PCG that would achieve the functionality
described in Figure 5.1.

Figure 5.1: Functionality QA-SDOLE−Setup

Parameters: Security parameter 1λ, PCGOLE = (PCGOLE.Gen,PCGOLE.Expand) as per Figure 5.2.
Functionality:
1: Sample (k0, k1)← PCGOLE.Gen(1

λ).
2: Output kσ to party Pσ for σ ∈ {0, 1}.

The protocol is described in Figure 5.2. The goal of the OLE correlation is to give the two
parties a pseudorandom xσ ∈ R, as well as an additive sharing of the product x0 · x1. To achieve
this, the authors constructed the framework on the Quasi-Abelian Syndrome Decoding assumption.
The players first have access to a vector a = (1, a1, · · · , ac−1) of elements in R, publicly. Taking
advantage of the canonical notion of the sparseness ofR, players can define xσ = ⟨a, eσ⟩, where
eσ = (e0σ, · · · , ec−1

σ) is a vector of t-sparse elements of R, for a given t. Because of the QA-SD
assumption, xσ is pseudorandom. Giving the parties additive sharing of x0 · x1 can be achieved via
Function Secret Sharing. Indeed, x0 ·x1 = ⟨a, e0⟩+ ⟨a, e1⟩ can be fully expressed via the elements in
(e0 ⊗ e1), and the public elements in the expression a⊗ a. Therefore we want to obtain an additive
sharing of (e0⊗ e1). Because each eiσ are t-sparse element inR, all the products ei0 · e

j
1 are t2-sparse

element. Therefore they can easily be concisely shared using t2 Single Point Function Secret Sharing
(SPFSS). This enables the parties to obtain a short seed kσ which contains their FSS keys to obtain
the full evaluation and recover the additive sharing of e0 ⊗ e1, as well as the descriptions of eσ .
Later on, the parties can use their seed to recover xσ and their additive share zσ of x0 · x1.

Theorem 5.4.1 ([BCC+23]). Let G be an Abelian group. Assume that SPFSS is a secure FSS scheme
for sums of point functions and that the QA-SD(q, c, t,G) assumption holds. Then there exists a generic
scheme to construct a PCG to produce one OLE correlation (described on Figure 5.2). If the SPFSS is
based on a PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based construction from [BGI16], we obtain:

• Each party’s seed has maximum size around : (ct)2 · ((log |G|− log t+1) · (λ+2)+λ+log q)+
ct(log |G|+ log q) bits.

• The computation of Expand can be done with at most (2 + ⌊(log q)/λ⌋)|G|c2t PRG operations,
and O(c2|G| log |G|) operations in Fq.

5.4.2 PCGs over F4 from QA-SD Assumption

The general description of the framework based on it can be found in Section 5.4.1.
In [BCC+23], the authors point out that their QA-SDOLE construction is the first to produce a

large number of OLE correlations over Fq, for any q ≥ 3. They propose usingG =
∏n

i=1 Z/(q−1)Z,
q ≥ 3. The direct consequence of this is that Fq[G] ≃ Fq[X1, . . . , Xn]/(X

q−1
1 −1, . . . , Xq−1

n −1) ≃∏D
i=1 Fq, where the last isomorphism equivalence comes from the Chinese Remainder Theorem.

Above, D = (q − 1)n is the number of elements in the group, and the number of OLE’s we can
get over Fq by applying this isomorphism. Looking closely, we instantiate our particular PCG over
R ≃ F4[X1, . . . , Xn]/(X

3
1 −1, . . . , X3

n−1), by setting q = 4. At the end of the protocolQA-SDOLE,

126 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

Figure 5.2: General construction of QA-SDOLE

Parameters: Security parameter λ, noise weight t = t(λ), compression factor c ≥ 2,G a finite abelian
group,R = Fq[G]. An FSS scheme (SPFSS.Gen,SPFSS.FullEval) for sums of t2 point functions, with
domain [0 . . . |G|) and range Fq.
Public Input: c− 1 random ring elements a1, . . . , ac−1 ∈ R.

PCG.Gen(1λ):
1: foreach σ ∈ {0, 1}, i ∈ [0 . . . c):

1.1: pi
σ ← (piσ,1, · · · , piσ,t)pi

σ,j∈G and vi
σ ← (F×

q)
t.

2: foreach i, j ∈ [0 . . . c):

2.1: Sample FSS keys (Ki,j
0 ,Ki,j

1)
$← SPFSS.Gen(1λ, 1n,pi

0 ⊗ pj
1,v

i
0 ⊗ vj

1).

3: Let kσ = ((Ki,j
σ)i,j∈[0...c), (p

i
σ,v

i
σ)i∈[0...c)).

4: Output (k0, k1).

PCG.Expand(σ, kσ):
1: Parse kσ as ((Ki,j

σ)i,j∈[0...c), (p
i
σ,v

i
σ)i∈[0...c)).

2: foreach i ∈ [0 . . . c):
2.1: Define the element ofRt,

eiσ =
∑

j∈[0...t)

bi
σ[j] · pi

σ[j].

3: Compute xσ = ⟨a, eσ⟩, where a = (1, a1, · · · , ac−1), eσ = (e0σ, · · · , ec−1
σ).

4: foreach i, j ∈ [0 . . . c):
4.1: Compute uσ,i+cj ← SPFSS.FullEval(σ,Ki,j

σ) and view it as a c2 vector uσ of elements in
Rt2 .

5: Compute zσ = ⟨a⊗ a,uσ⟩.
6: Output xσ, zσ .

the parties obtain one OLE overR , the parties obtain one OLE overR; a general description of the
construction is given in Figure 5.2.

Let us denote (xσ, zσ) the output of party σ. To obtain many OLE’s over F4, the parties have to
evaluate xσ, zσ ∈ F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3

n − 1) over the full domain (F×
4)

n. The standard
approach is to use a Fast Fourier Evaluation to efficiently obtain this result. Here, we remark that, in
our group algebra, fast multiplication also requires FFT, first in a multi-evaluation form, and then in
the interpolation form. Therefore, doing the interpolation again is wasteful as in the end we will
evaluate again after interpolating. As such, we can avoid the intermediate steps of multi-evaluation-
then-interpolation and work directly with the evaluations, without coming back toR. That is, we do
not construct the polynomials xσ, zσ over F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3

n − 1) but instead, we
focus directly on the polynomials evaluations.

Let Evaln(f) = {f(x1, . . . , xn), (x1, . . . , xn) ∈ {1, θ, θ + 1}n} be the set of all the possible
evaluations. Instead of giving the parties the description of the coefficients of the polynomials
ai ∈ a, we can give them the vectors of all the evaluations of all the polynomials, that is giving them
Evaln(ai), for all i. Because we can write xσ = e0σ + e1σa1 + · · ·+ ec−1

σ ac−1, it follows that all the

5.4 A Fast PCG for F4-OLEs 127

evaluations of xσ can be obtained from Evaln(e
i
σ) and Evaln(ai). All that remains is to evaluate the

eiσ polynomials. They are sparse polynomials, and therefore their evaluations can be computed very
efficiently i.e., if the polynomials have t non-zero coefficients, then the cost of the evaluation is linear
in t · 3n. As a result, we can obtain Evaln(xσ) for a cost linear in 3n.

The computation of Evaln(zσ) is a little trickier. As mentioned above, x0 · x1 can be seen as a
function of degree 2 in (e0, e1), with constant coefficients depending solely from a⊗ a. Because
Evaln(ai) is already given to the parties, the evaluation of the coefficient from a⊗ a can be obtained
using only c2 multiplications. It remains to compute the evaluations of the additive shares of the
polynomials ei0 · e

j
1. There are c2 such polynomials shared among the parties, and we can view each

share as a random polynomial. Therefore, each party has to compute the evaluation of c2 random
polynomials. This is a crucial part of the scheme and we devote the next section to it. Figure 5.3
represents the PCG framework of [BCC+23] tailored to our setting, its correctness and security are
implied by Theorem 5.4.1.

As an optimization, we use a regular noise distribution which we show in Remark 5.4.1 allows us
to argue a regular noise distribution on the resulting polynomial e0 ⊗ e1. In particular, the outer
sum of regular noise positions results in t noise positions per block.

Remark 5.4.1. Let t = 3k be a power of 3, and letR = F4[G] = F4[X1, . . . , Xn]/(X
3
1 −1, . . . , X3

n−
1). Let e0 and e1 be sampled from a t-regular noise distribution overR. In other words, the coordinates
of ei can be divided into t consecutive blocks B0, . . . , Bt−1 of size 3n/t, each block having a single
nonzero coordinate. More precisely, considering the lexicographic ordering of the monomials, and since
t = 3k, block Bi is formed by all monomials Xp such that the first k coordinates of p represent the
ternary decomposition of the integer i (over k trits). For example, if n = 4 and t = 9, the 34 = 81
monomials are split into 9 blocks B0, . . . , B8 of size 9, and a monomialXp lies in B6 if and only if p
is of the form (2, 0, ⋆, ⋆) with ⋆ ∈ {0, 1, 2}, where [2∥0] is the ternary decomposition of the integer 6.

We now show that the product e = e0 · e1 has at most t nonzero monomials in each block.6 Indeed,
let i ∈ {0, . . . , 3k−1} and letXp be a monomial appearing in ewith a nonzero coefficient. In particular,
the first k entries of p can be parsed as the ternary decomposition of i, which we denote by [i]3. It is
clear thatXp is of the formXp0+p1 where p0 (resp. p1) identifies one of the t nonzero monomials in
e0 (resp. e1), and the sum is taken modulo 3 component-wise. In particular, there are at most t2 such
monomials, and for each nonzero monomialXp0 of e0, with first k entries [i0]3, there corresponds at
most one nonzero monomial in e1 contributing to Xp, namely Xp−p0 .7 In other words, the monomial
Xp can be produced by at most t possible pairs of monomials (Xp0 ,Xp1), whose first k entries are
([i0]3, [i]3 − [i0]3), with i0 ranging over {0, . . . , t− 1}.

Example. Let n = 3 and t = 3. Set e0 := X2
3 + X1X2X3 + X2

1 (which corresponds to po-
sitions (0, 0, 2), (1, 1, 1), and (2, 0, 0)) and e1 := 1 + X1 + X2

1 (which corresponds to positions
(0, 0, 0), (1, 0, 0), and (2, 0, 0)). Then,

e0 · e1 = (1 +X2
3 +X2X3)︸ ︷︷ ︸
∈B0

+(X1 +X1X
2
3 +X1X2X3)︸ ︷︷ ︸
∈B1

+(X2
1 +X2

1X
2
3 +X2

1X2X3)︸ ︷︷ ︸
∈B2

.

Proposition 5.4.1. LetR = F4[G] = F4[X1, . . . , Xn]/(X
3
1−1, . . . , X3

n−1)whereG =
∏n

i=1 Z/3Z
is an Abelian group. Assume that SPFSS is a secure FSS scheme for sums of point functions and that the
QA-SD(q, c, t,G) assumption holds for regular noise distribution. Then there exists a generic scheme to

6This crucially relies on the fact that since t is a power of 3, we can uniquely identify the block corresponding to a
given monomial by looking at the first k entries of its exponent. When t is not a power of 3, this is not true anymore.

7Note that the corresponding monomialXp1 might not appear in e1.

128 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

construct a PCG to produce one OLE correlation (described on Figure 5.3). If the SPFSS is based on a
PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based construction from [BGI16], we obtain:

• Each party’s seed has maximum size around: (c · t)2 · ((n · log(3)− log t+ 1) · (λ+ 2) + λ+
2) + c · t · (n · log(3) + 2) bits.

• The computation of Expand can be done with at most log(3) · (2 + ⌊(2)/λ⌋) · n · c2 · t PRG
operations, and O(n · log(3) · c2 · 3n) operations in F4.

The proof follows immediately from Theorem 5.4.1 and the analysis of [BCC+23].

5.4.3 Optimizations

Optimizing on FSS evaluation via early termination

We remark that we can use a very simple trick that enables the parties to obtain the evaluation of
their MPFSS shares 64 times faster than with the standard construction (and at a slight reduction in
communication). The trick comes from the fact that the standard construction of the DPF based on
the GGM tree implies that each leaf is of size λ = 128 bits. It was pointed out in [BGI16] that we
can consider early termination in the case of small outputs. In our case, we would like a single leaf
to encode a value in F4. This only requires 2 bits instead of the 128 bits we get as output, making
the naïve evaluation “waste” 126 bits of the output. Instead, we can avoid wasting computation by
truncating the tree 6 levels earlier and setting the value of the new 128-bit leaf on the special path to
encode a unit vector consisting of zeroes except on the exact 2 bits where it equals to the correct
value of F4 element. This essentially involves “hard-coding” the end of the path into the leaf directly,
as illustrated in Section 5.4.3. Using this idea, we reduce the computational cost of evaluating the DPF
by 64× and reduce the communication costs (key size of the DPF) by roughly 6 · 128 bits [BGI16].
This simple trick was initially introduced in the context of PIR applications [BGI16], but could not be
applied to prior PCG constructions until now since all PCG constructions (except for the recent PCG
construction of Bombar et al. [BCC+23]) required the DPF output to be encode elements of a large
field. Similarly, in silent OT extension protocols [BCG+19b; BCG+19a; CRR21; BCG+22; RRT23],
which are also bottlenecked by DPF evaluations, this optimization could not be applied because there,
the DPF is used to output “authenticated” shares of a (potentially small) field element with a (large)
MAC, which requires the leaves to encode 128 bit output value.

Real tree generated

Virtual trees hard-
coded in the
leaves

Figure 5.4: Early termination example in the case we truncate only two steps earlier. Solid black
nodes represent “zero” leaves, whereas solid red leaves can take on any value.

Fast evaluation over F4[X1, . . . , Xn]/(X
3
1 − 1, . . . , X3

n − 1)

The high-level idea. Given a polynomial P with n variables, the party wants to compute Evaln(P),
that is, to evaluate P over

(
F×
4

)n where F×
4 = {1, θ, θ + 1}. Here, we adapt the standard divide-

5.4 A Fast PCG for F4-OLEs 129

Figure 5.3: QA-SDOLE for F4OLEAGE overR from evaluations of functions

Parameters: Noise weight t = t(λ), compression factor c, ring R = F4[X1, . . . , Xn]/(X
3
1 −

1, . . . , X3
n − 1). A SPFSS scheme SPFSS = (SPFSS.Gen,SPFSS.FullEval) for sums of t2 point

functions, with domain [0 . . . 3n) and range F4.

Public Input: c−1 vectors of length 3n over F4, corresponding to the result of Evaln(ai), for uniformly
random a1, · · · , ac−1 ∈ R, therefore the full evaluation of the c elements ai.

PCG.Gen(1λ):
1: foreach σ ∈ {0, 1}, i ∈ [0 . . . c):

1.1: Sample random pi
σ ← {(pi

σ,1, . . . ,p
i
σ,t) | pi

σ,j ∈ Fn
3}, and vi

σ ← (F×
4)

t.
▷ [Optimization]: pi

σ can be sampled from regular noise distribution. See Remark 5.4.1.
2: foreach i, j ∈ [0 . . . c):

2.1: Sample FSS keys (Ki,j
0 ,Ki,j

1)← SPFSS.Gen(1λ, 1n,pi
0 ⊞ pj

1,v
i
0 ⊗ vj

1).
▷ If using regular noise as an optimization, then
▷ SPFSS is for the sum of t point functions with domain [0, . . . , 3n/t).

3: Let kσ = ((Ki,j
σ)i,j∈[0...c), (p

i
σ,v

i
σ)i∈[0...c)).

4: Output (k0, k1).

PCG.Expand(σ, kσ):
1: Parse kσ as ((Ki,j

σ)i,j∈[0...c), (p
i
σ,v

i
σ)i∈[0...c)).

2: foreach i ∈ [0 . . . c):
2.1: Define over F4 the polynomial:

eiσ(X) =
∑

j∈[0...t)

vi
σ[j] ·X

pi
σ [j].

2.2: Compute Evaln(eiσ).
3: Compute xσ = ⟨a, eσ⟩, where a = (1, a1, · · · , ac−1), eσ = (e0σ, · · · , ec−1

σ).
4: From Evaln(e

i
σ) and Evaln(ai), compute Evaln(xσ).

5: foreach i, j ∈ [0 . . . c),
5.1: Compute uσ,i+cj ← SPFSS.FullEval(σ,Ki,j

σ) and view it as a c2 vector uσ of elements inR.
6: foreach j ∈ [0 . . . c2):

6.1: Compute Evaln(uσ,j).
▷ [Optimization]: only need to perform c(c+ 1)/2 FFTs, see Section 5.3.5.

7: Compute Evaln(zσ), with zσ = ⟨a⊗ a,uσ⟩.
8: Output (Evaln(xσ),Evaln(zσ)).

130 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

Packed representation of F4 elements

Figure 5.5: Representation of a vector of F4 elements. Red blocks represent the high-order bits while
the blue blocks represent low-order bits.
and-conquer style algorithm to our case, see for example the seminal work of [CT65]. Remark
that

P (X1, . . . , Xn) = P0(X1, . . . , Xn−1) +XnP1(X1, . . . , Xn−1) +X2
nP2(X1, . . . , Xn−1).

Instead of classically dividing our problem into 2 sub-problems, we divide it into 3 sub-problems.
This is a ternary generalization of a standard FFT algorithm adapted to our case. Then,

Evaln(P) = Evaln−1(P0) ∪XnEvaln−1(P1) ∪X2
nEvaln−1(P2). (5.1)

Denote by C(Evaln(P)) the number of operations carried out to obtain all the 3n evaluations on the set
F×
4 . Then we have C(Evaln(P)) = 3C(Evaln(P))+2 ·3n, which leads us to C(Evaln(P)) = 4 ·n ·3n.

The concrete number of additions or multiplications is 2 · n · 3n. This quick back-of-the-envelope
calculation captures the essence of the technique, even if it does not accurately count the cost of the
various operations and does not take into account what is implemented in practice. We now turn to
a concrete implementation of this idea:

Concrete implementation. An element of F4 has a direct canonical representation using 2 bits.
Given an element x ∈ F4, we write x(0) and x(1) to denote the F2-coefficients of x viewed as a
polynomial over F2[X]/(X2 +X + 1); that is, x = x(0) + θ · x(1). Using a given machine word of
64 bits we represent a vector of size 32 over F4, such that the even indexed bits are high order and
the odd indexed bits are low order.

This is illustrated in Figure 5.5.
As stated before, we use a recursive algorithm to compute all the evaluations, displayed in

algorithm Figure 5.6. We considered using a non-recursive approach but no significant efficiency
gains were observed, so we instead decided to use the recursive algorithm due to its conceptual
simplicity.

Actual cost of the computation. A step in the algorithm of Figure 5.6 is to evaluate a polynomial
of degree 2, with coefficient in F4, for the values {1, θ, θ+1}. Let the polynomial be a+ bXi + cX2

i .
• in the case Xi = 1, then the evaluation of the polynomial becomes a+ b+ c.

• in the case Xi = θ, the evaluation becomes (a+ c) + θ · (b+ c).

• in the case Xi = θ + 1, the evaluation becomes (a+ b) + θ · (b+ c).
Note that we want to compute all the different evaluations, and therefore we can try to reduce the

overall costs by reusing several of the intermediate calculations. We can obtain the three evaluations
via the following steps: (1)compute a+ b, a+ c, b+ c; (2) compute θ · (b+ c); (3) compute a+ b+ c;
(4) Compute (a+ c)+ θ · (b+ c), and (a+ b)+ θ · (b+ c). Therefore, we count 12 classical bit-by-bit
XOR over F2, and a multiplication by θ to obtain the three needed evaluations of the polynomial.

Taking advantage of the computer words.

Today’s processors offer XOR operations for machine words of size 64 bits.
We take advantage of this parallelism to run multiple FFTs in parallel with a small overhead

compared to running a single FFT. With 64-bit machine words, we can perform up to 32 FFT in

5.5 Distributed Seed Generation 131

Figure 5.6: Fast-Evaluation algorithm

Parameters: n > 0 an integer, P ∈ F3[X1, · · · , Xn]/(X
3
1 − 1, · · · , X3

n − 1), a polynomial with n
variables.
FastEval(n, P):
1: if n = 1 then

1.1: return {P (1), P (θ), P (θ + 1)}
2: else

2.1: Write P (X1, · · · , Xn) = P0(X1, · · · , Xn−1) + XnP1(X1, · · · , Xn−1) +
X2

nP2(X1, · · · , Xn−1).
2.2: S := {}.
2.3: ∀i ∈ {0, 1, 2}, Si ← FastEval(n− 1, Pi).
2.4: foreach i ∈ [|S0|]:

2.4.1: fj(X) := S0[j] + S1[j]X + S2[j]X
2.

2.4.2: S ← S ∪ {fj(1), fj(θ), fj(θ + 1)}.
2.5: return S.

parallel. We pack the c2 FFTs required by our PCG as follows: we let each machine word contain a
single coefficient of the same monomial for each of the c2 polynomials that we are trying to compute.
This saves a factor of c2, at no extra cost.8 Therefore, the cost of the evaluation of a single polynomial
being of 16n · 3n−1 XOR, the optimization entails the cost of obtaining the full evaluation of the c2
polynomials to be 16⌈c2/64⌉n · 3n−1.

5.5 Distributed Seed Generation

In this section, we build a distributed point function that works over ternary indices. This generaliza-
tion of the standard DPF construction allows us to cleanly work on a ternary basis. In particular, this
makes the distributed seed generation protocol for our PCG construction in Figure 5.2 much more
efficient by avoiding the use of expensive secure binary decomposition protocols when working over
ternary secret shares.

5.5.1 A Ternary Distributed Point Function

In prior constructions [GI14; BGI15; BGI16], the domain of DPF was set to X = {0, 1}n. In contrast,
we will use a ternary domain {0, 1, 2}n. While this change may appear conceptually straightforward,
the constructions of [GI14; BGI15] do not immediately generalize to non-binary input domains. We
therefore construct a ternary DPF using the main ideas behind the two state-of-the-art construc-
tions [BGI15; BGI16].

Definition 5.5.1 (Random Distributed Point Function (rDPF)). We say aDPF scheme is a random DPF
(rDPF) scheme if DPF.Gen does not take the parameter β as input, and the output value at index α is a
secret share of a value (s∥1) ∈ {0, 1}λ+1, where s pseudorandom conditioned onKσ , for σ ∈ {0, 1}.

8In practice, using larger machine words has an impact by increasing stack usage, but this is only observed when
performing an FFT over very large polynomials.

132 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

Lemma 5.5.1 (Adapted from [BGI16]). Any random DPF scheme with output group {0, 1}λ+1 can be
transformed into a DPF scheme for any choice of β ∈ G a the cost of increasing the key size by log |G|
bits.

Remark 5.5.1. Looking ahead to Section 5.5.2, using a random DPF makes our protocols and analysis
simpler. In particular, describing a distributed key generation protocol for a random DPF eliminates edge
cases associated with the output value β. Separately, we show how to generate an “output correction
word” that can be used to go from the s∥1 output of an rDPF to an arbitrary output β.

We present our construction for a ternary rDPF in Figure 5.7 and analyze security in Proposi-
tion 5.5.1. in Figure 5.7, our ternary DPF construction is with full-evaluation optimization where all
s values are {0, 1}λ bit strings and t values are bits. Superscripts 0 and 1 represent a party identifier
which we write as σ ∈ {0, 1} when referring to a value held by party σ ∈ {0, 1}. The construction
follows a similar template to the DPF construction of [BGI15].

Proposition 5.5.1 (Ternary rDPF security). Figure 5.7 satisfies the correctness and security properties
of Definition 5.5.1.

Proof. We prove correctness and security in turn.

Correctness. Fix an index α = (α1, . . . , αn) in a ternary basis. Consider the ternary tree consisting
of 3n nodes. Let Lσ

i,j be any node label at depth i and index j ∈ [3i] as computed by party σ. Define
Li,j = L0

i,j ⊕ L1
i,j and ℓi = 3iαi + 3i−1αi−1 + · · ·+ α1. To prove correctness, we start by showing

that the following two invariants are maintained throughout the tree:

1. For all node labels Li,j where j ̸= ℓi, Li,j = 0λ∥0.

2. For all node labels Li,j where j = ℓi, Li,j = L′∥1 where L′ ∈ {0, 1}λ \
{
0λ
}
.

If we can show that the two invariants are maintained, it immediately follows that only one path
along the tree contains non-zero labels. Once we’ve shown this, we can argue why the output at the
non-zero label at the leaf is equal to β.

We first prove that all child node labels (Li,3j , Li,3j+1, Li,3j+2) of parent nodes with labels
Li−1,j = 0λ∥0 are also zero. That is, (Li,3j , Li,3j+1, Li,3j+2) = (0λ+1)3. By definition, Li−1,j =
L0
i−1,j ⊕ L1

i−1,j , where Lσ
i−1,j = sσi−1∥tσi−1, for σ ∈ {0, 1}. Since Li−1,j = 0λ∥0, it holds that

L0
i−1,j = L1

i−1,j . Hence, G(s0i−1,j) = G(s1i−1,j), which implies that both parties compute the
same τσi in Line 3.1 of Traverse. Moreover, because Li−1,j = si−1∥ti−1 = 0λ∥0, it follows that
t0i−1⊕ t1i−1 = 0. In turn, we have that γ0i ⊕ γ1i = τ0i ⊕ τ1i , since the correction word is not applied (it
is multiplied by tσi−1—an XOR share of zero). This implies that (1) Li,3j = s0i,0∥t0i,0⊕ s1i,0∥t1i,0 = 0λ∥0,
(2) Li,3j+1 = s0i,1∥t0i,1 ⊕ s1i,1∥t1i,1 = 0λ∥0, and (3) Li,3j+2 = s0i,2∥t0i,2 ⊕ s1i,2∥t1i,2 = 0λ∥0, as required.

In other words, the above proves that all child node labels that are off the “special path” described
by α remain zero. We must now prove that all child node labels that are on the “special path” (i.e.,
child nodes where the parent node is non-zero) only have one non-zero sibling after the correction
word is applied.

We prove this by induction starting with the root of the tree. Note that L0 = s00∥t00 ⊕ s10∥t10 and
that t00 ⊕ t10 = 1 by definition (Line 2 of DPF.Gen). Since the root label has no siblings, the base case
is trivially satisfied. Now consider any parent node label Li−1,j of the form Li−1,j = s∥1 for some
s ̸= 0λ. Consider the child node labels (Li,3j , Li,3j+1, Li,3j+2) of parent node label Li−1,j . Since
Li−1,j ̸= 0λ∥1, it holds that L0

i−1,j ̸= L1
i−1,j . Hence, with overwhelming probability, it holds that

G(s0i−1,j) ̸= G(s1i−1,j), which implies that both parties compute a different τσi in Line 3.1 of Traverse.

5.5 Distributed Seed Generation 133

Figure 5.7: Construction of Ternary rDPF

Parameters: Pseudorandom generator G : {0, 1}λ → {0, 1}3(λ+1).

rDPF.Gen(1λ, 1n, α):
1: parse α = α1∥ · · · ∥αn where αi ∈ {0, 1, 2} for all i ∈ [n].
2: s00, s

1
0 ←R {0, 1}λ, t00 ← 0, t10 ← 1.

3: foreach i ∈ [n]:
3.1: (s0i,0∥t0i,0∥s0i,1∥t0i,1∥s0i,2∥t0i,2)← G(s0i−1).
3.2: (s1i,0∥t1i,0∥s1i,1∥t1i,1∥s1i,2∥t1i,2)← G(s1i−1).
3.3: si,0∥ti,0 ← (s0i,0∥t0i,0)⊕ (s1i,0∥t1i,0).
3.4: si,1∥ti,1 ← (s0i,1∥t0i,1)⊕ (s1i,1∥t1i,1).
3.5: si,2∥ti,2 ← (s0i,2∥t0i,2)⊕ (s1i,2∥t1i,2).
3.6: CWi,j ← si,j∥ti,j for all j ∈ {0, 1, 2} \ {αi}.
3.7: ri ←R {0, 1}λ.
3.8: CWi,αi

← (si,αi
⊕ ri)∥(ti,αi

⊕ 1).
3.9: CWi ← CWi,0∥CWi,1∥CWi,2.
3.10: s0i ∥t0i ← s0i,αi

∥t0i,αi
⊕ (t0i−1 · CWi,αi

).
3.11: s1i ∥t1i ← s1i,αi

∥t1i,αi
⊕ (t1i−1 · CWi,αi

).
4: pp← (CW1, . . . ,CWn).
5: KA ← (pp, s00∥t00),KB ← (pp, s10∥t10).
6: return (KA,KB).

rDPF.FullEval(σ,Kσ):
1: parse Kσ = (pp, sσ0∥tσ0).
2: out← Traverse(σ, pp, sσ0 , t

σ
0 , 1), γ ← 3n.

3: parse out = (v1, . . . , vγ) ∈ ({0, 1}λ)γ .
4: return (v1, . . . , vγ).

Traverse(σ, pp, sσi−1, t
σ
i−1, i):

1: parse pp = (CW1, . . . ,CWn).
2: if i = n+ 1 then

2.1: return sσi−1∥tσi−1.
3: else

3.1: τσi ← G(sσi−1), γσ
i ← τσi ⊕ (tσi−1 · CWi).

3.2: parse γσ
i = sσi,0∥tσi,0∥sσi,1∥tσi,1∥sσi,2∥tσi,2 ∈ {0, 1}3(λ+1).

3.3: return Traverse(σ, pp, sσ0 , t
σ
0 , i+1)∥Traverse(σ, pp, sσ1 , tσ1 , i+1)∥Traverse(σ, pp, sσ2 , tσ2 , i+

1).

134 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

Moreover, because ti = t0i ⊕ t1i = 1, it holds that γi = γ0i ⊕γ1i = (τ0i ⊕ τ1i)⊕ (CWi,0∥CWi,1∥CWi,2).
Then, by construction of CWi,0, CWi,1, CWi,2 (Lines 4.6–4.9 of DPF.Gen), we have that γi =
si,0∥ti,0∥si,1∥ti,1∥si,2∥ti,2 where si,k∥ti,k = 0λ∥0 for all k ∈ {0, 1, 2} \ {αi}. In turn, we have that
two (out of the three) child labels are zero. In words, this proves that at each level of the tree, only
one label is non-zero, and the non-zero label is at index ℓi = 3iαi + 3i−1αi−1 + · · ·+ α1 because
the αi−1-st child label of each non-zero parent label is always non-zero. This proves the second
invariant.

To satisfy the rDPF definition, it remains to show that the non-zero leaf label of the tree is of
the form Ln = s∥1 where s is a pseudorandom value (from the viewpoint of either party). To see
this, consider the base case of Traverse (when i = n + 1) for the non-zero leaf label. The output
of Traverse is just sn∥tn. Therefore, for the non-zero child, (s0n∥t0n ⊕ s1n∥t1n) = sn∥tn ⊕ CWn,αn =
sn ⊕ (sn ⊕ rn)∥1 = rn∥1 by definition of CWn,αn in Line 3.8 of DPF.Gen. It follows that rn is
pseudorandom since it is chosen uniformly at random and is masked by sn in CWn,αn , which is
pseudorandom conditioned on either key.

Security. Informally, security holds because (1) the starting labels s00 and s10 given to party 0
and 1, respectively, are uniformly random and (2) the correction words (i.e., pp) consist of the
expanded shares of party σ masked by the pseudorandom shares of party 1− σ which makes them
computationally indistinguishable from random from the viewpoint of party σ given Kσ .

Formally, we prove security via a sequence of hybrid distributions and reducing to the pseudo-
randomness of a GGM tree construction [GGM19] (generalized to have a branching factor of 3 to
match our ternary tree). Fix α = α1∥ . . . ∥αn.

HybridH0. This hybrid consists of the DPF keyKσ as defined in Figure 5.7. Specifically,

H0 = {(
CW1

CW1,0∥CW1,1∥CW1,2, . . . ,

CWn

CWn,0∥CWn,1∥CWn,2)

pp

, sσ0∥tσ0},

where CWi,j , for i ∈ [n] and j ∈ {0, 1, 2}, is defined as CWi,j = s0i,j∥t0i,j ⊕ s1i,j∥t1i,j if j ̸= αi,
CWi,j = (si,αi ⊕ ri)∥(t0i,j ⊕ t1i,j ⊕ 1) if j = αi ∧ i ̸= n, and CWn,j = sn ⊕ β∥0 if j = αi ∧ i = n.

Hybrid H1. In this hybrid, we define each correction word as being party σ’s share masked with
a uniformly random mask (as opposed to being masked by a value computed by party 1 − σ).
Specifically,

H1 = {(CW1,0∥CW1,1∥CW1,2, . . . ,CWn,0∥CWn,1∥CWn,2), s
σ
0∥tσ0},

where CWi,j , for i ∈ [n] and j ∈ {0, 1, 2}, is defined as CWi,j = sσi,j∥tσi,j ⊕ maski,j if j ̸= αi,
CWi,j = (sσi,αi

⊕ ri)∥(tσi,j ⊕ 1)⊕maski,j if j = αi ∧ i ̸= n, and CWn,j = (sσn ⊕ β∥0)⊕maskn,j if
j = αi ∧ i = n. Where for each i, j, maski,j ←R {0, 1}λ+1.

Hybrid H2. In this hybrid, we define each correction word as being a uniformly random string of
appropriate length. That is,

H2 = {(CW1,0,CW1,1∥CW1,2∥ . . . ,CWn,0∥CWn,1∥CWn,2), s
σ
0∥tσ0},

where CWi,j , for all i ∈ [n] and j ∈ {0, 1, 2}, is defined as CWi,j ←R {0, 1}λ+1.

Claim 1. H0 ≈c H1

5.5 Distributed Seed Generation 135

Proof. The claim follows from the pseudorandomness of the GGM construction [GGM19] (generalized
to the ternary-arity case). Specifically, each s1−σ

i,j ∥t
1−σ
i,j is computed as the output of a PRG applied

to a pseudorandom seed s1−σ
i−1 ∥t

1−σ
i−1 , where the starting seed s1−σ

0 is sampled independently of
sσ0 . Therefore, by the pseudorandomness of the GGM construction [GGM19, Theorem 3], for all
i ∈ [n], j ∈ {0, 1, 2}, it follows that s1−σ

i,j ∥t
1−σ
i,j is also pseudorandom. We can therefore replace the

pseudorandom strings with uniformly random strings maski,j , which proves the claim.

Claim 2. H1 ≡ H2

Proof. The claim follows immediately by noticing that the uniformly random stringsMi,j andmaski,j
inH1 act as information-theoretic masks, making the distribution identical toH2.

Finally, to prove security we must prove the existence of an efficient simulator S that generates
a computationally indistinguishable DPF key Kσ on input (1λ, 1n, σ). The existence of S follows
trivially by the fact thatH3 consists of a uniformly random string of length {0, 1}3(λ+1)+λ+1.

5.5.2 Distributed DPF Key Generation

In this section, we describe how two parties can generate DPF keys using secret-shares of the index
α (i.e., the index at which the point function evaluates to a non-zero value). Our approach is inspired
by the protocol of Doerner-shelat [Ds17], which makes only black-box use of OT to select the
appropriate correction word at each level. While formally constructing such a protocol requires
multiple functionalities and is quite tedious, conceptually, the core idea is very simple. At a high
level, each party evaluates the DPF tree, layer-by-layer, and computes the correction word CWi for
layer i using a secure protocol that takes as input shares of the i-th trit αi ∈ {0, 1, 2} and the “shares”
of the left, middle, and right node labels (si,0∥ti,0, si,1∥ti,1, si,2∥ti,2). The protocol then outputs CWi

exactly as computed in Figure 5.7 to both parties. However, this only results in the parties getting
rDPF keys. To make the output consist of a chosen value β ∈ F4, we construct a separate protocol
that outputs a special “output” correction word, denoted CWout, that can be used to go from an rDPF
output to a chosen output β (which the parties hold shares of). Conceptually, CWout is the last-layer
correction word that encodes the “early termination” output in addition to β.

Overview of functionalities and instantiations. The main ideal functionality, FrDPF-DKG, for
computing the full rDPF keys (matching the distribution of rDPF.Gen in Figure 5.7) is presented in
Figure 5.11. It is followed by an instantiation, ΠrDPF-DKG, in Figure 5.12 where we show how to (1)
compute the correction words in each i-th layer by executing the sub-protocol ΠrDPF-CW, (2) define
the input of ΠrDPF-CW for each i-th layer that maintains the correctness of rDPF.FullEval (indicator
bits and constraints between correction words) and the rDPF.Gen can be distributed recursively.
Since we are using a sub-protocolΠrDPF-CW, we construct its instantiation in Figure 5.9 and define its
ideal functionality in FrDPF-CW Figure 5.8. ΠrDPF-CW shows how to securely compute the correction
words for each i-th layer based on

(
1
3

)
-OT (note that our protocol ΠrDPF-CW only outputs CWi, it

does not handle the correctness of indicator bits and the constraints between correction words in
two consecutive layers).

Then, in ΠOutput-CW Figure 5.14, we show how to handle computing the “output” correction
word that allows us to go from a random output (as computed by the rDPF) to a chosen output, by
computing a final correction word CWout and satisfies the ideal functionality FOutput-CW defined
in Figure 5.13. The output of PCG-OLE is formed by the multiple shares of each party so an extra

136 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

OLE over F4 is used to convert from multiple shares to additive shares before being the input of
Figure 5.14.

We show that all of our instantiations are secure in the semi-honest setting and we prove security
in the UC model, where we only make use of the standard ideal functionality 1-out-of-3 chosen OT(
1
3

)
-OT (Figure 5.10).

Figure 5.8: FrDPF-CW for computing the correction words

The functionality interacts with a party Pσ and an adversary A.
Parameters: Pseudorandom generator G : {0, 1}λ → {0, 1}3(λ+1).
Functionality:
1: Wait for input

(
[[αi]]σ̄, r

σ̄
i , (s

σ̄
i,j∥tσ̄i,j)j∈{0,1,2}

)
∈ F3 × {0, 1}λ × {0, 1}3(λ+1) from A.

2: Wait for input
(
[[αi]]σ, r

σ
i , (s

σ
i,j∥tσi,j)j∈{0,1,2}

)
∈ F3 × {0, 1}λ × {0, 1}3(λ+1) from party Pσ .

3: Set αi := [[αi]]0 + [[αi]]1 ∈ F3, ri := r0i ⊕ r1i .
4: Compute si,j∥ti,j := (s0i,j∥t0i,j)⊕ (s1i,j∥t1i,j) for j ∈ {0, 1, 2}.
5: CWi,j := si,j∥ti,j for all j ∈ {0, 1, 2} \ {αi}, CWi,αi := (si,αi ⊕ ri)∥(ti,αi ⊕ 1).
6: CWi := CWi,0∥CWi,1∥CWi,2.
7: Output CWi to both Pσ and A.

Lemma 5.5.2 (Ternary rDPF-CW security). The construction ΠrDPF-CW in Figure 5.9 securely realizes
the ideal functionality FrDPF-CW (Figure 5.8) against semi-honest adversaries in the

(
1
3

)
-OT hybrid

model.

Proof. We show correctness and security in turn.

Correctness. To prove the correctness, we show that in our construction ΠrDPF-CW, CWi =
(CWi,0,CWi,1,CWi,2) satisfies the following two conditions:

1. For all j ∈ {0, 1, 2} \ {αi} then CWi,j = (s0i,j∥t0i,j)⊕ (s1i,j∥t1i,j).

2. Otherwise, CWi,αi = (s0i,αi
∥t0i,αi

)⊕ (s1i,αi
∥t1i,αi

)⊕ (ri∥1).

Observe that in our construction from the definition of {C0
j ,C

1
j}j∈{0,1,2}, we haveC0

αi
⊕C1

αi
=

CWi ⊕ z0 ⊕ z1. Note that αi = [[αi]]0 + [[αi]]1. Consider,

Mσ
0 = (Cσ

0 ,C
σ
1 ,C

σ
2), M

σ
1 = (Cσ

1 ,C
σ
2 ,C

σ
0), M

σ
2 = (Cσ

2 ,C
σ
0 ,C

σ
1),

for σ ∈ {0, 1}. Observe that eachMσ
j = (Cσ

j ,C
σ
j+1,C

σ
j+2), for j ∈ {0, 1, 2}, is a cyclically shifted

vector defined by shifting (Cσ
0 ,C

σ
1 ,C

σ
2) to the left j times.

We show that party σ = 0 obtains the correct correction word (the case where σ = 1 is
symmetric). Party 0 invokes the

(
1
3

)
-OT as the receiver with input [[αi]]0, and party 1 plays the role

of the sender with input
M1

[[αi]]1
= (C1

[[αi]]1
,C1

[[αi]]1+1,C
1
[[αi]]1+2).

After invoking
(
1
3

)
-OT, party 0 obtainsC1

[[αi]]1+[[αi]]0
= C1

αi
. (By a symmetric argument, party 1 gets

C0
αi
.) It is easy to see thatC1

αi
⊕z0 andC0

αi
⊕z1 form shares ofCWi, since (C0

αi
⊕z1)⊕(C1

αi
⊕z0) =

(CWi ⊕ z0 ⊕ z1)⊕ (z0 ⊕ z1), where CWi is defined identically to the i-th iteration of Figure 5.7. It
follows that the output of the protocol (opening of the shares of CWi) is correct.

5.5 Distributed Seed Generation 137

Figure 5.9: Protocol ΠrDPF-CW for computing the correction words

Parameters:
• Party σ ∈ {0, 1} has input [[αi]]σ ∈ F3, r

σ
i ∈ {0, 1}λ, (sσi,j∥tσi,j)j∈{0,1,2} ∈ {0, 1}3(λ+1).

• An instantiation of chosen
(
1
3

)
-OT.

Protocol:
For each party σ ∈ {0, 1}:
1: Sample zσ ←R {0, 1}3(λ+1).

2: Define

Cσ
0 := (rσi ⊕ sσi,0∥(tσi,0 ⊕ σ), sσi,1∥tσi,1, sσi,2∥tσi,2)⊕ zσ ▷ [[CWi]]σ when αi = 0

Cσ
1 := (sσi,0∥tσi,0, rσi ⊕ sσi,1∥(tσi,1 ⊕ σ), sσi,2∥tσi,2)⊕ zσ ▷ [[CWi]]σ when αi = 1

Cσ
2 := (sσi,0∥tσi,0, sσi,1∥tσi,1, rσi ⊕ sσi,2∥(tσi,2 ⊕ σ))⊕ zσ ▷ [[CWi]]σ when αi = 2

Mσ
0 := (Cσ

0 ,C
σ
1 ,C

σ
2), M

σ
1 := (Cσ

1 ,C
σ
2 ,C

σ
0), M

σ
2 := (Cσ

2 ,C
σ
0 ,C

σ
1)

3: Invoke
(
1
3

)
-OT with party σ̄ as follows:

- Party σ̄ plays the role of the sender with inputs Mσ̄
[[αi]]σ̄ .

- Party σ plays the role of the receiver and inputs [[αi]]σ ∈ F3.
- Party σ gets Mσ̄

[[αi]]σ̄ [[[αi]]σ] ∈ {0, 1}3(λ+1) while party σ̄ gets nothing.

4: Define [[CWi]]σ := Mσ̄
[[αi]]σ̄ [[[αi]]σ]⊕ zσ and broadcast [[CWi]]σ .

5: Construct CWi := [[CWi]]σ ⊕ [[CWi]]σ̄ ∈ {0, 1}3(λ+1).
6: Output (CWi,0,CWi,1,CWi,2).

Figure 5.10: Ideal functionality
(
1
3

)
-OT in the semi-honest setting

Parameters:
There are two parties, a sender and a receiver. The sender has input (m0,m1,m2) ∈ {0, 1}∗ while the
receiver has input b ∈ {0, 1, 2}.
Functionality:
1: Wait for input (m0,m1,m2) ∈ {0, 1}∗ from the sender.
2: Wait for input b ∈ {0, 1, 2} from the receiver.
3: Outputmb to the receiver and ⊥ to the sender.

Security. We prove our security in the UC model. In a nutshell, the proof boils down to the security
of the 1-out-of-3 oblivious transfer functionality

(
1
3

)
-OT. We assume

(
1
3

)
-OT securely realizes the

ideal functionality Figure 5.10 in a semi-honest setting. Since the role of the two parties is symmetric,
we can build a simulator that simulates the view of both parties when one of them is corrupted.
Without loss of generality, assume σ is the corrupted party, Sim interacts with A as in the hybrid
model below.

Hybrid H0. This hybrid is identical to the real protocol, both parties are honest, and
(
1
3

)
-OT is

executed honestly.

138 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

Figure 5.11: Ideal functionality FrDPF-DKG for distributed key generation

The functionality interacts with a party Pσ and an adversary A.
Parameters: rDPF = (rDPF.Gen, rDPF.FullEval) as constructed in Figure 5.7.
Functionality:
1: Wait for input ([[αi]]σ̄)i∈[n] ∈ Fn

3 , (rσ̄i)i∈[n] ∈ ({0, 1}λ)n, and sσ̄0 ∈ {0, 1}λ from A.
2: Wait for input ([[αi]]σ)i∈[n] ∈ Fn

3 , (rσi)i∈[n] ∈ ({0, 1}λ)n, and sσ0 ∈ {0, 1}λ from party Pσ .
3: Set t00 = 0, t10 = 1.
4: Set αi := [[αi]]0 + [[αi]]1 ∈ F3 and ri := r0i + r1i ∈ {0, 1}λ for each i ∈ [n].
5: For each i ∈ [n]:

Compute CWi as done in Step 3 of rDPF.Gen(1λ, 1n, α) in Figure 5.7.
6: Set pp := (CW1, . . . ,CWn),K0 := (pp, s00∥t00), and K1 := (pp, s10∥t10).
7: Output Kσ to Pσ andKσ̄ to A.

Hybrid H1. This hybrid is identical to H0 except that now Sim plays the role of A and inputs
{[[α]]σ, rσi , (sσi,j∥tσi,j)j∈{0,1,2}} to the ideal functionality FrDPF-CW and receives CWi as output.
The distribution of this hybrid is identical to that of the previous hybrid since in this hybrid, Sim
does not interact with A.

HybridH2. This hybrid distribution is identical toH1 except now Sim emulates
(
1
3

)
-OT as follows.

• WhenA is the sender, learns the input vectorMσ
[[αi]]σ

ofA. Since Sim knows (sσi,j∥tσi,j)j∈{0,1,2}
then fromMσ

[[αi]]σ
, [[αi]]σ , Sim recomputes zσ .

• WhenA is the receiver with input [[αi]]σ , Sim plays the role of
(
1
3

)
-OT and givesA an random

string Mσ̄
[[αi]]σ̄

[[[αi]]σ].

This hybrid is indistinguishable fromH1 since by assumption we assume that
(
1
3

)
-OT realizes the

ideal functionality of one-out-of-three OTs.

Hybrid H3. In this hybrid, Sim defines [[CWi]]σ̄ := Mσ̄
[[αi]]σ̄

[[[αi]]σ] ⊕ zσ and [[CWi]]σ̄ := CWi −
[[CWi]]σ ∈ {0, 1}3(λ+1). Sim plays the role of party σ, sends [[CWi]]σ̄ to A.
This hybrid is indistinguishable from the previous hybrid. First, from the definition of [[CWi]]σ and
[[CWi]]σ̄ , the output CWi of ideal world and real world are identically distributed. Second, in the
view of A after invoking the

(
1
3

)
-OT, the message it getsMσ̄

[[αi]]σ̄
[[[αi]]σ] is uniformly random since

zσ̄ used as a mask is random over {0, 1}3(λ+1). This concludes the proof.

Proposition 5.5.2 (Ternary rDPF-DKG security). The construction in Figure 5.12 securely realizes the
ideal functionality FrDPF-DKG (Figure 5.11) against semi-honest adversaries in the FrDPF-CW hybrid
model.

Proof. Correctness. Fix an index αi = (α1, . . . , αi) in a ternary tree of i-th layer. The correctness
follows by the correctness of ΠrDPF-CW Lemma 5.5.2. Since both parties invoke ΠrDPF-CW and get
CWi ← ΠrDPF-CW(i, [[αi]]σ, r

σ
i , (s

σ
i,j∥tσi,j)j∈{0,1,2}). where CWi = (CWi,0,CWi,1,CWi,2) such that:

1. For all j ∈ {0, 1, 2} \ {αi} then CWi,j = (s0i,j∥t0i,j)⊕ (s1i,j∥t1i,j).

5.5 Distributed Seed Generation 139

Figure 5.12: Protocol ΠrDPF-DKG for Distributed Key Generation

Parameters:
• Pseudorandom generator G : {0, 1}λ → {0, 1}3(λ+1).

• There are two parties σ, σ̄ ∈ {0, 1} with input ([[αi]]σ)i∈[n] ∈ Fn
3 , (rσi)i∈[n] ∈ ({0, 1}λ)n,

sσ0,0 ∈ {0, 1}λ.

Protocol:
For each party σ ∈ {0, 1}:
1: Set t̂σ0,1 := σ and ŝ0,1 := s0,0.
2: foreach i ∈ [n]:

3.1: Set d := 3i.
3.2: foreach j ∈ [d− 1]:

3.1.1: (sσi,3j∥tσi,3j∥sσi,3j+1∥tσi,3j+1∥sσi,3j+2∥tσi,3j+2)← G(ŝσi−1,j).

3.3: sσi,0∥tσi,0 :=
⊕d

j=1(s
σ
i,3j∥tσi,3j).

3.4: sσi,1∥tσi,1 :=
⊕d

j=1(s
σ
i,3j+1∥tσi,3j+1).

3.5: sσi,2∥tσi,2 :=
⊕d

j=1(s
σ
i,3j+2∥tσi,3j+2).

3.6: Invoke ΠrDPF-CW with party σ̄:
CWi ← ΠrDPF-CW(i, [[αi]]σ, r

σ
i , (s

σ
i,j∥tσi,j)j∈{0,1,2}).

3.7: foreach j ∈ [d− 1]:
3.7.1: (ŝσi,3j∥t̂σi,3j∥ŝσi,3j+1∥t̂σi,3j+1∥ŝσi,3j+2∥t̂σi,3j+2) :=

(sσi,3j∥tσi,3j∥sσi,3j+1∥tσi,3j+1∥sσi,3j+2∥tσi,3j+2)⊕ (t̂σi−1,j · CWi).
3: pp := (CW1, . . . ,CWn).
4: KA := (pp, s00,0∥0),KB := (pp, s10,0∥1).
5: return (KA,KB).

2. Otherwise, CWi,αi = (s0i,αi
∥t0i,αi

)⊕ (s1i,αi
∥t1i,αi

)⊕ (ri∥1).

Therefore, CWi defined in ΠrDPF-CW has the same properties as CWi defined in Figure 5.7. Let
s = [[s]]0 ⊕ [[s]]1. To prove correctness of rDPF.FullEval when using CWi computed via ΠrDPF-CW,
we show that for each i ∈ [n],

t̂i−1,αi := t̂0i−1,αi ⊕ t̂1i−1,αi = 1,

otherwise t̂i−1,αi = 0 for i ∈ [3i − 1] \ {αi}. This is done by induction for i ∈ [n]. For i = 1, this
follows immediately. For i ≥ 1, we have

(ŝi,3j∥t̂i,3j∥ŝi,3j+1∥t̂i,3j+1∥ŝi,3j+2∥t̂i,3j+2)

= (si,3j∥ti,3j∥si,3j+1∥ti,3j+1∥si,3j+2∥ti,3j+2)⊕ (t̂i−1,j · CWi).

Assumeαi ∈ {3j∗, 3j∗+1, 3j∗+2} for some j∗ ∈ [3i−1], from the definition of (sσi,j∥tσi,j)j∈{0,1,2},σ∈{0,1}
then we have:

1. (si,3j∥ti,3j∥si,3j+1∥ti,3j+1∥si,3j+2∥ti,3j+2) = (0, 0, 0) for j ̸= j∗.

140 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

2. CWi,j = si,3j∗+j∥ti,3j∗+j for j ̸= αi,
otherwise CWi,αi = (si,3j∗+αi∥ti,3j∗+αi)⊕ (r1∥1).

then by induction t̂i−1,j∗ = 1 =⇒ t̂i,3j∗+αi+1 = 1 otherwise, t̂i,j = 1 for i ∈ [3i+1 − 1].

Security. Since our instantiation does not have any interaction between two parties except both
parties invoke to ΠrDPF-CW. So our security against semi-honest setting is directly achieved from
the security of ΠrDPF-CW Lemma 5.5.2. Note that the distribution of our CWi is indistinguishable
from the distribution of CWi defined in Figure 5.7 and it is proved to be secure in the view of party
σ given Kσ as below. Informally, security holds because (1) the starting labels s00 and s10 given to
party 0 and 1, respectively, are uniformly random and (2) the correction words (i.e., pp) consist of
the expanded shares of party σ masked by the pseudorandom shares of party 1− σ which makes
them computationally indistinguishable from random from the viewpoint of party σ given Kσ .

Formally, we prove security via a sequence of hybrid distributions and reducing to the pseudo-
randomness of a GGM tree construction [GGM19] (generalized to have a branching factor of 3 to
match our ternary tree). Fix α = α1∥ . . . ∥αn.

HybridH0. This hybrid consists of the DPF keyKσ as defined in Figure 5.7. Specifically,

H0 = {(
CW1

CW1,0∥CW1,1∥CW1,2, . . . ,

CWn

CWn,0∥CWn,1∥CWn,2)

pp

, sσ0∥tσ0},

where CWi,j , for i ∈ [n] and j ∈ {0, 1, 2}, is defined as CWi,j = s0i,j∥t0i,j ⊕ s1i,j∥t1i,j if j ̸= αi,
CWi,j = (si,αi ⊕ ri)∥(t0i,j ⊕ t1i,j ⊕ 1) if j = αi ∧ i ̸= n, and CWn,j = sn ⊕ β∥0 if j = αi ∧ i = n.

Hybrid H1. In this hybrid, we define each correction word as being party σ’s share masked with
a uniformly random mask (as opposed to being masked by a value computed by party 1 − σ).
Specifically,

H1 = {(CW1,0∥CW1,1∥CW1,2, . . . ,CWn,0∥CWn,1∥CWn,2), s
σ
0∥tσ0},

where CWi,j , for i ∈ [n] and j ∈ {0, 1, 2}, is defined as CWi,j = sσi,j∥tσi,j ⊕ maski,j if j ̸= αi,
CWi,j = (sσi,αi

⊕ ri)∥(tσi,j ⊕ 1)⊕maski,j if j = αi ∧ i ̸= n, and CWn,j = (sσn ⊕ β∥0)⊕maskn,j if
j = αi ∧ i = n. Where for each i, j, maski,j ←R {0, 1}λ+1.

Hybrid H2. In this hybrid, we define each correction word as being a uniformly random string of
appropriate length. That is,

H2 = {(CW1,0,CW1,1∥CW1,2∥ . . . ,CWn,0∥CWn,1∥CWn,2), s
σ
0∥tσ0},

where CWi,j , for all i ∈ [n] and j ∈ {0, 1, 2}, is defined as CWi,j ←R {0, 1}λ+1.

Claim 3. H0 ≈c H1

Proof. The claim follows from the pseudorandomness of the GGM construction [GGM19] (generalized
to the ternary-arity case). Specifically, each s1−σ

i,j ∥t
1−σ
i,j is computed as the output of a PRG applied

to a pseudorandom seed s1−σ
i−1 ∥t

1−σ
i−1 , where the starting seed s1−σ

0 is sampled independently of
sσ0 . Therefore, by the pseudorandomness of the GGM construction [GGM19, Theorem 3], for all
i ∈ [n], j ∈ {0, 1, 2}, it follows that s1−σ

i,j ∥t
1−σ
i,j is also pseudorandom. We can therefore replace the

pseudorandom strings with uniformly random strings maski,j , which proves the claim.

5.5 Distributed Seed Generation 141

Claim 4. H1 ≡ H2

Proof. The claim follows immediately by noticing that the uniformly random stringsMi,j andmaski,j
inH1 act as information-theoretic masks, making the distribution identical toH2.

Finally, to prove security we must prove the existence of an efficient simulator S that generates
a computationally indistinguishable DPF key Kσ on input (1λ, 1n, σ). The existence of S follows
trivially by the fact thatH3 consists of a uniformly random string of length {0, 1}3(λ+1)+λ+1.

Figure 5.13: Ideal functionality FOutput-CW with message β

Parameters:
• The functionality interacts with a party Pσ and an adversary A.

• Pseudorandom generator G : {0, 1}λ → (F4)
3t .

Functionality:
1: Wait for input

(
([[αi]]σ̄)i∈[t], [[β]]σ̄, s

σ̄
)
∈ (F3)

t × F4 × {0, 1}λ from A.
2: Wait for input

(
([[αi]]σ)i∈[t], [[β]]σ, s

σ
)
∈ (F3)

t × F4 × {0, 1}λ from party Pσ .

3: Set αi := [[αi]]0 + [[αi]]1 ∈ F3, α :=
∑t

i=1 αi3
i−1 ∈ [3t],

β := [[β]]0 + [[β]]1 ∈ F4.
4: CWt ← eα · β ⊕G(s0)⊕G(s1), where eα ∈ (F4)

3t is the α-th indicator vector.
5: Output CWt to Pσ and A.

Proposition 5.5.3 (TernaryOutput-CW security). The constructionΠOutput-CW in Figure 5.14 securely
realizes the ideal functionality FOutput-CW (Figure 5.13) against semi-honest adversaries in the

(
1
3

)
-OT

hybrid model.

Proof. Informally, the constructionΠOutput-CW is very similar to thewaywe compute the intermediate
CWi in Figure 5.9, except that (1) the inputs of the sender in each

(
1
3

)
-OT execution of the i-th

iteration are always the share of a vector (C1
i,αi
⊕ z0i)⊕ (C0

i,αi
⊕ z1i) ∈ (F4)

3i (the entry of position
α :=

∑i
k=0 αk3

k−1 is β, all others entries are 0), and (2) ΠOutput-CW is computed iteratively such
that the value that each party obtains (seen as [[CWi]]σ) is kept secret.

Correctness. We show that for each i ∈ [t],

[[β]]0 ⊕ [[β]]1 = β, where, [[β]]i ∈ (F4)
3t

As shown in the correctness proof of Lemma 5.5.2, Mσ
j = (Cσ

j ,C
σ
j+1,C

σ
j+2) for j ∈ {0, 1, 2} and

σ ∈ {0, 1} is obtained by cyclically shifting the vector (Cσ
0 ,C

σ
1 ,C

σ
2) to the left j times. Moreover,

we have that [[αi]]1 + [[αi]]0 = αi.
Consider party 0 (the case for party 1 is symmetric). Party 0 invokes the

(
1
3

)
-OT functionality as

the receiver with input [[αi]]0 and party 1 plays the role of the sender with input

M1
[[αi]]1

= (C1
i,[[αi]]1

,C1
[[αi]]1+1,C

1
[[αi]]1+2),

(viewed as a vector of vectors). Then, it holds that party 0 obtains as output

M1
[[αi]]1

[[[αi]]0] = C1
i,[[αi]]1+[[αi]]0

= C1
i,αi

.

142 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

Figure 5.14: Protocol ΠOutput-CW for computing the last CWs with constraint β

Parameters:
• There are two parties σ, σ̄ ∈ {0, 1} with input ([[αi]]σ)i∈[t] ∈ (F3)

t, [[β]]σ ∈ F4, s
σ ∈ {0, 1}λ.

• An instantiation of chosen
(
1
3

)
-OT.

• Pseudorandom generator G : {0, 1}λ → (F4)
3t .

Protocol:
For each party σ ∈ {0, 1}, for i ∈ [t]:
1: Sample zσi ←R (F4)

3i .
2: Define

Cσ
i,0 = ([[β]]σ, 0, 0)⊕ zσi ∈ (F4)

3i ,

Cσ
i,1 = (0, [[β]]σ, 0)⊕ zσi ∈ (F4)

3i ,

Cσ
i,2 = (0, 0, [[β]]σ)⊕ zσi ∈ (F4)

3i ,

Mσ
0 = (Cσ

i,0,C
σ
i,1,C

σ
i,2), M

σ
1 = (Cσ

i,1,C
σ
i,2,C

σ
0), M

σ
2 = (Cσ

i,2,C
σ
i,0,C

σ
i,1)

3: Invoke
(
1
3

)
-OT with party σ̄ as follows:

- Party σ̄ plays the role of the sender with inputs Mσ̄
[[αi]]σ̄ .

- Party σ plays the role of the receiver and inputs [[αi]]σ ∈ F3.

- Party σ gets Mσ̄
[[αi]]σ̄ [[[αi]]σ] ∈ (F4)

3i while party σ̄ gets nothing.

4: Define [[β]]σ := Mσ̄
i [[[αi]]σ]⊕ zσi ∈ (F4)

3i .
Output [[CW]]t := [[β]]σ ⊕G(sσ).

By symmetry, party 1 then obtains C0
i,αi

by invoking the
(
1
3

)
-OT protocol with party 0 now

playing the role of the sender. Then, letting [[β]]1 = C0
i,αi
⊕ z1i and [[β]]0 = C1

i,αi
⊕ z0i be the shares

of β, because the z0i and z1i terms cancel out the masking terms added by each party, we get that

[[β]]0 ⊕ [[β]]1 = C1
i,αi
⊕ z1i ⊕C0

i,αi
⊕ z0i =

(β, 0, 0), if αi = 0.

(0, β, 0), if αi = 1.

(0, 0, β), if αi = 2.

or in other words, [[β]]0 ⊕ [[β]]1 = eαi · β, where eαi is the αi-th standard basis vector over F3i
4 .

To see that correctness still holds after the t-th iteration, {Cσ
i+1,j}{j∈{0,1,2} in (i+1)-th iteration

is defined by [[β]]σ ∈ (F4)
3i from the i-th iteration and adding 0’s to make sure that β and the position

of share value in vector of size (F4)
3i is

∑i
k=0 αk3

k−1. This leads to CW := eα ·β⊕G(s0)⊕G(s1) ∈
(F4)

3t where α =
∑t

i=0 αi3
i−1, as required.

Security Analysis. The simulator Sim is constructed similarly to the simulator in the proof
of Lemma 5.5.2, except that Sim does not play the role of party σ to output [[β]]σ for each iter-
ation. Instead, it only outputs the share for the last iteration, which allows both parties to construct
the output CW. Sim emulates

(
1
3

)
-OT to learn the mask zσ̄i and inputs of A that plays the role of the

sender to
(
1
3

)
-OT in the i-th iteration. Then, using this information, Sim simulates the (i + 1)-th

5.6 Implementation and Evaluation 143

iteration. And for the last step, to simulate the output of the honest party, Sim defines [[CW]]σ
from [[CW]]σ that is constructed by emulating

(
1
3

)
-OT and CW the output of ideal functionality

FOutput-CW.

5.6 Implementation and Evaluation
We implement F4OLEAGE in C (v15.0.0) as a library that consists of two main components: (1) an
optimized implementation of the ternary DPF construction and (2) an implementation of the FFT
over F4.

The open-source code for our F4OLEAGE PCG benchmarks is available online.9

Parameter Estimation and Revaluation of [BCC+23].

We provide a SageMath [Ste+24] script to help choose a set of concrete parameters for QA-SD. It
computes the probability distribution of the weight of the folded error and computes the cost of the
best attack. It also takes into account the previous attack.

As a by-product, we can use it to give a new estimation of the security of [BCC+23]. Results are
given in Section 5.6. It shows that we would need to significantly increase the value of t in order to
achieve 128 bits of security. The parameters are chosen using a new and improved analysis of the
QA-SD assumption, the details of cryptanalysis can be found in the full version [BBC+24].

n c t (nfold, kfold, ω0) (Niter,CostDecoding)
Number of
subgroups

Actual
security

25 4 16 (2048, 1536, 54) (214, 289) 2145 118

30 4 16 (2048, 1536, 54) (214, 289) 2190 118

35 4 16 (2048, 1536, 54) (214, 289) 2235 118

Table 5.2: Reestimation of the security for the parameters given in [BCC+23]. They were considered
to yield more than 128 bits of security, they were even considered to be conservative. Note that in
[BCC+23], all the parameters were for q = 3. Here t is the number of errors per block, while in
[BCC+23] it was the total number of errors. nfold and kfold are respectively the length and dimension
of the folded code. Niter is the number of different foldings necessary to run the attack, and ω0 is the
optimal target weight.

Implementation details. Our DPF implementation takes advantage of the AES-NI instruction
to implement a fast PRG G using fixed-key AES (from the OpenSSL library [Ope]) and the Davies-
Meyer transform. We experimented with using the half-tree optimization of [GYW+23]. However,
we observed a minimal performance gains (2-4%) from this optimization when applied to a ternary
tree. This is because the half-tree optimization is tailored to the binary tree DPF construction where
it can shave a larger fraction of total AES calls. 10

We implement the recursive FFT over F4 described in Section 5.4.3 and perform the FFT in
parallel by packing all the coefficients into one machine word (for our parameters, we will require 16

9
https://github.com/sachaservan/FOLEAGE-PCG.

10Since there are roughly 1/3 nodes for which we can hope to shave AES calls in the ternary tree, but we can only
shave one-out-of-three AES calls using the “half-tree” optimization in the ternary-tree case, we can only hope to save
1/3 · 1/3 ≈ 10% of the AES computation time. However, given that AES calls are dominant but not the entire cost of the
DPF (we also need to compute many XORs), we end up with roughly 2-4% savings. This could perhaps be optimized a bit
further, but the performance savings would plateau at roughly 6%.

https://github.com/sachaservan/FOLEAGE-PCG

144 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

FFTs, so we can perform them in parallel using a uint32 type for packing). While the FFT could
possibly be optimized further using an iterative algorithm and taking advantage of AVX instructions,
the simplicity of the recursive algorithm coupled with the parallel packing makes it sufficiently fast
for F4OLEAGE. This is especially true given that the DPF evaluations end up being the dominant
cost (roughly 70% of the total computation). We do not implement the distributed seed generation
protocol given that it consists of black-box invocations of any one-out-of-three OT. However, we
do estimate the concrete performance and communication costs of distributed seed generation by
benchmarking the libOTe library on state-of-the-art OT protocols [RR].

Benchmarks. We perform our benchmarks using AWS c5.metal (3.4GHz CPU) and t2.large
instances. All experiments are averaged across ten trials and evaluated on a single core. To gain a
better understanding of the overhead involved with each component, we start by benchmarking the
SPFSS (sum of many DPFs) and FFT implementation separately and report the results in Tables 5.3
and 5.4. Concretely, if we are packing 3n coefficients over F4, we want the output of the DPF to
be close to a power of 3. To achieve this, we terminate 5 levels early and pack 512 elements of F4

in the virtual leaves by having the DPF output be a 1024 bit block. Therefore, the key size of each
DPF is 3 · 128 · (n − 5) + 128 + 2 · 512 when using AES with 128-bit keys. We report the SPFSS
benchmarks in Table 5.3 when evaluating the sum of 730 DPFs (this corresponds to the t = 27 regime
in Figure 5.3, since the SPFSS needs to be instantiated with t2 = 729 DPFs). When evaluating the
SPFSS, we observe a roughly 1.8× reduction in computation time over evaluating just one DPF. This
is due to better cache performance when evaluating many DPFs and working over the same memory
allocation to evaluate consecutive DPFs. Our choice of DPF range 311, 313, and 315 correspond to the
size of a regular noise block when D = 314, D = 316, and D = 318, respectively (see Table 5.5).

Range
(elements of F4)

SPFSS.Gen
(c5.metal | t2.large)

SPFSS.FullEval
(c5.metal | t2.large)

AES
(c5.metal | t2.large)

Key Size
(per party)

311 5 ms | 11 ms 26 ms | 39 ms 18 ms | 27 ms 315 kB
313 7 ms | 13 ms 260 ms | 364 ms 174 ms | 253 ms 385 kB
315 8 ms | 16 ms 2357 ms | 3272 ms 1526 ms | 2229 ms 456 kB

Table 5.3: Performance of our SPFSS (for the sum of 730 DPFs) on two EC2 instances and comparison
to the raw AES computation time required for the PRG evaluations.

Number of
Variables

Packed FFT (4×)
(c5.metal | t2.large)

Packed FFT (16×)
(c5.metal | t2.large)

Packed FFT (32×)
(c5.metal | t2.large)

14 20 ms | 30 ms 21 ms | 33 ms 28 ms | 45 ms
16 180 ms | 280 ms 213 ms | 329 ms 312 ms | 475 ms
18 1682 ms | 2608 ms 2165 ms | 3280 ms 4913 ms | 7478 ms

Table 5.4: Performance of our FFT implementation over F4 on two different EC2 instances. Packing
increases throughput almost linearly with the packing size. However, with a large number of variables
(> 16), it is more efficient to use smaller packing values to avoid the increased memory usage from
the recursive FFT function calls.
Benchmarking our PCG. Next, we benchmark the performance of the PCG from Figure 5.3 on
various parameters. The parameter D = 3n determines the number of Beaver triples we generate in
total. In contrast, the parameters c (compression factor) and t (noise weight) influence the size of the
PCG key and evaluation time. Specifically, evaluating the PCG requires (c · t)2 calls to the DPF on
domain sizeD/t (due to regular noise) and c(c+1)/2 calls to the FFT (which we can parallelize by a
factor of up to 32 using packing on 64-bit architectures). The DPF evaluation cost ends up being the

5.7 N-party MPC with Preprocessing from F4-OLEs 145

dominant factor (approximately 70%) in the total computation. The FFT accounts for less than 5% of
the total computation. Interestingly, packing the FFT (which requires computing a matrix transpose
of dimension c(c+ 1)/2× 3n to translate from c(c+ 1)/2 polynomials to a packed representation
suitable for computing the FFT in parallel) accounts for 15% of the total computation! This motivates
using small values of c, such as c = 4, as otherwise this transpose becomes the dominant cost in
the entire PCG expansion. We leave exploring the possibility of implementing fast SIMD-based
matrix-transpose algorithms (e.g., [TE76; AS20]) as a promising direction for future work, since it
may allow using a smaller noise weight (e.g., t = 9) and larger c.

We set t = 27 since we need it to be a power of 3 (see Remark 5.4.1), and report the computational
costs of the PCG for different values of D in Table 5.5 and c.

The choice of (c = 4, t = 27) corresponds to a conservative parameter choice based on our
calculations. To show the influence of c on the performance, we also evaluate our PCG construction
on c = 3, which corresponds to a more aggressive parameter choice. We observe a much smaller
PCG seeds and better concrete performance with c = 3 compared to c = 4.

(a) Parameters: (c = 4, t = 27)

D
PCG.Expand
(c5.metal | t2.large)

Key Size
(per party)

314 579 ms | 890 ms 5.0 MB
316 5.9 s | 8.4 s 6.2 MB
318 54.3 s | – 7.3 MB

(b) Parameters: (c = 3, t = 27)

D
PCG.Expand
(c5.metal | t2.large)

Key Size
(per party)

314 346 ms | 534 ms 2.8 MB
316 3.5 s | 5.2 s 3.5 MB
318 32.1 s | – 4.1 MB

Table 5.5: Performance of our PCG implementation on two different EC2 instances. We set the noise
parameter to t = 27 and let c = 4 in the left table (our conservative parameter choice) and c = 3 in
the right table (our aggressive parameter choice); D = 318 ran out of memory on the t2.large.
Estimating setup costs. We use the libOTe library [RR] to benchmark the state-of-the-art OT
protocols. We run libOTe on localhost and evaluated both SoftSpoken OT [Roy22] and the
RRT’ silent OT [RRT23]. For SoftSpoken, we measured roughly 50,000,000 OT/s on the c5.metal
machine and roughly 32,000,000 OT/s on the t2.large. For the RRT, we measure a throughput
of nearly 7,000,000 on c5.metal and 4,000,000 on the t2.large. To run our distributed DPF
key generation protocol, we require n = 14 (at D = 314) and n = 18 (at D = 318) rounds per
DPF. All the (ct)2 DPF keys can be computed in parallel. Therefore, in total, using our conservative
parameters of c = 4 and t = 27, we require roughly 11,600 parallel calls to an OT functionality in n
rounds. Our aggressive parameters of c = 3 and t = 27 only require 6,561 parallel OT calls.

5.7 N-party MPC with Preprocessing from F4-OLEs

5.7.1 Secure Computation in the FcBT-Hybrid Model

In this section, we show how to securely compute arbitrary Boolean circuits in the preprocessing
model, given access to an ideal functionality generating Beaver triples over F4. Because F4 is an
extension field of F2, we note that simply replacing the F2-Beaver triples with F4-Beaver triples in
the classical instantiation of the GMW protocol in the preprocessing model works out-of-the-box.
However, doing so naïvely doubles the communication during the online phase, from 2 bits per AND
gate and per party to 4 bits per AND gate and per party (due to using masks over F4 instead of F2). In
the technical overview, we introduced an improved strategy, which first converts each F4-triple into
an F2-triple using one bit of communication per party, and then runs the standard GMW protocol

146 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

Figure 5.15: Ideal Functionality FcBT(F) for sampling N -party Beaver triples

The functionality interacts with N parties P1, . . . , PN and an adversary A.
Functionality:
1: Wait for the input Corr ⊊ [N] from A consisting of the set of corrupted parties and a list

([[a]]i, [[b]]i, [[c]]i)i∈Corr of triples in F.
2: Wait for the command init from each party Pi for i /∈ Corr.
3: Sample ([[a]]i, [[b]]i, [[c]]i)i∈[N]\Corr ∈ F3 uniformly at random conditioned on

a · b =

(
N∑
i=1

[[a]]i

)
·

(
N∑
i=1

[[b]]i

)
=

N∑
i=1

[[c]]i.

4: Output ([[a]]i, [[b]]i, [[c]]i) to each party Pi for i /∈ Corr.

over F2. To formally prove this result, we introduce on Figure 5.15 a corruptible functionality for
generating an N -party Beaver triple over a field F. Here, corruptible means that the adversary can
freely choose the shares obtained by the corrupted parties; it is known that this functionality suffices
to securely instantiate GMW [BCG+19b] and can be securely instantiated given a programmable
PCG for OLE over F [BCG+20b]. That is:

Theorem 5.7.1 ([BCG+19b, Theorem 19, Theorem 41]). Assume that there is a programmable PCG
for generatingm OLEs over F. Then there exists a protocol securely realizingm calls to the functionality
FcBT(F) in Figure 5.15 using N · (N − 1) instances of a protocol to securely distribute the seeds of the
PCG, and no further communication.

We formally state our construction as a protocol ΠBT(F4 → F2) that securely instantiates the
FcBT(F2) functionality in the FcBT(F4)-hybrid model, using a single call to FcBT(F4) and one bit
of communication per party. The protocol is represented in Figure 5.16.

Figure 5.16: N -party protocol ΠBT(F4 → F2)

Protocol:
1: The parties invoke the functionality FcBT(F4) with init. Each party Pi receives a triple

([[a]]4i , [[b]]
4
i , [[c]]

4
i) ∈ F3

4.

2: Each party Pi broadcasts [[b]]4i (1). All parties reconstruct b(1) =
∑N

i=1[[b]]
4
i (1).

Output: Each party Pi outputs ([[a]]4i (0), [[b]]4i (0), [[c]]4i (0) + b(1) · [[a]]4i (1)).

Lemma 5.7.1. The protocol ΠBT(F4 → F2) of Figure 5.16 securely realizes the FcBT(F2) corruptible
functionality in the FcBT(F4)-hybrid model, using one bit of communication per party and a single call
to FcBT(F4).

Combining this lemma with the GMW protocol yields:

Corollary 5.7.1. There exists an N -party computation protocol that securely evaluates all Boolean
circuits with m AND gates in the preprocessing model using m calls to the FcBT(F4) functionality. The
protocol uses N ·m bits of communication in the preprocessing phase, and two bits of communication
per AND gate and per party in the online phase.

5.7 N-party MPC with Preprocessing from F4-OLEs 147

Proof of Lemma 5.7.1.

Proof. Sim emulates theFcBT(F4) functionality, and receives fromA the set Corr ⊊ [N] of corrupted
parties and the list ([[a]]4i , [[b]]4i , [[c]]4i)i∈Corr of corrupted triples over F4. On behalf of each honest
party Pi for i /∈ Corr, Sim broadcast a uniformly random bit [[b]]4i (1). Then, Sim reconstructs b(1)←∑N

i=1[[b]]
4
i (1) and sends ([[a]]4i (0), [[b]]4i (0), [[c]]4i (0) + b(1) · [[a]]4i (1))i∈Corr to the ideal functionality

FcBT(F2) on behalf of the ideal adversary. As the [[b]]4i (1) are sampled uniformly and independently
at random by FcBT(F4), it only remains to show that the honest parties output in an execution
of ΠBT(F4 → F2) is distributed as the output of the adversaries from FcBT(F2) in the simulated
game. In turn, this follows immediately from the fact that from the viewpoint of A, the shares
[[a]]4i (0), [[b]]

4
i (0) are uniformly distributed for every i /∈ Corr, and the values [[c]]4i (0) + b(1) · [[a]]4i (1)

for i /∈ Corr form uniformly random shares of

∑
i/∈Corr

(
[[c]]4i (0) + b(1) · [[a]]4i (1)

)
=

N∑
i=1

(
[[c]]4i (0) + b(1) · [[a]]4i (1)

)
− C

= a(0)b(0) + a(1)b(1) + b(1) · a(1)− C

= a(0)b(0)− C,

where C ←
∑

i∈Corr[[c]]
4
i (0) + b(1) · [[a]]4i (1) denote the sum of the corrupted parties’ last output.

This concludes the proof.

5.7.2 Improved Protocol for N = 2 Parties

In the previous section, we described how N parties can construct an F2-triple using one invocation
to FcBT(F4) and N bits of communication. Typically, the functionality FcBT(F4) is realized by
making N · (N − 1) calls to a (programmable) OLE functionality over F4. When N = 2, this
translates to using two calls to the OLE functionality, and two bits of communication. In this section,
we introduce an improved construction, where N = 2 parties generate a Beaver triple over F2 using
a single call to an OLE functionality over F4, and no communication. The corruptible functionality
for generating OLEs over F4 is represented on Figure 5.17.

Figure 5.17: Ideal Functionality F-OLE(F) for sampling an OLE

The functionality interacts with 2 parties A, B and an adversary A.
Functionality:
1: Wait for an input (Corr, u, v) ∈ {A,B,⊥} × F× F from A, and for the command init from each

party.
2: If Corr = ⊥, sample (a, b, [[ab]]A) ←$ F3 and set [[ab]]B ← a · b − [[ab]]A. If Corr = A, sample

b ←$ F, set (a, [[ab]]A) ← (u, v) and [[ab]]B ← a · b − [[ab]]A. If Corr = B, sample a ←$ F, set
(b, [[ab]]B)← (u, v) and [[ab]]A ← a · b− [[ab]]B .

3: Output (a, [[ab]]A) to A and (b, [[ab]]B) to B.

In Figure 5.18, we represent our protocol for realizing FcBT(F2) when N = 2 in the F-OLE(F4)-
hybrid model.

Lemma 5.7.2. The protocol Π(F4OLE → F2BT) of Figure 5.18 securely realizes the FcBT(F2) cor-
ruptible functionality for N = 2 parties in the F-OLE(F4)-hybrid model, using no communication and
a single call to F-OLE(F4).

148 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

Figure 5.18: A 2-party protocol Π(F4OLE→ F2BT)

Protocol:
1: The parties invoke the functionality F-OLE(F4) with init, and receive (a, [[ab]]4A) and (b, [[ab]]4B),

respectively.
Output:
Alice outputs (a(0), a(1), a(0)a(1) + [[ab]]4A(0)) and Bob outputs (b(1), b(0), b(0)b(1) + [[ab]]4B(0)).

We refer the reader to the technical overview (Section 5.3.4) for the correctness analysis. The
proof of security is straightforward and we omit it.

5.8 Faster Seed Expansion from Hashing
In this section, we describe how to combine hashing techniques with our PCG construction to
reduce the number of DPFs required to share the noise vector. This has the advantage of making
seed expansion faster with the number of PRGs operations being O(2|G|), but comes at the cost of
requiring a trusted setup. As such, this optimization is primarily suited to silent-OT applications
where a trusted setup process is assumed.

5.8.1 Faster Seed Expansion

We propose a better fQA-SDOLE scheme in terms of seed expansion efficiency that is based on
the DPF scheme and hashing techniques. First, we take advantage of Cuckoo hashing and simple
hashing [KKR+16; PSW+18; BC23; RS21] to distribute the noise positions. After that, we use a DPF
scheme for each bin to obtain the shares of value in each noise position by using a DPF for each bin.
In general, using our Cuckoo hashing trick, we obtain a faster seed expansion but need to assume
a trusted dealer because the Doerner-shelat protocol does not apply out-of-the-box. However, our
fQA-SDOLE construction has an advantage compared to theQA-SDOLE protocol, i.e., the computation
cost of Expand is smaller and independent of t (number of noisy coordinates). Concretely, the number
of PRG operations is reduced from O(t|G|) to O(2|G|). Just as with the QA-SDOLE construction,
our fQA-SDOLE construction can be used to obtain OLE correlation over any finite field F (except for
F2), however, to be consistent with the concept of our main contribution, we cast our fQA-SDOLE

over F3 for concrete efficiency.

Hashing schemes

We fixK random hash functions h1, · · · , hK , where hi : G→ [m] andm = O(n). Using theseK
hash functions, the formal definition and parameter choices of Cuckoo hashing and simple hashing
schemes (similarly as in PSI works [KD08; KKR+16; BC23; RS21]) are as follows:

1. Cuckoo hashing schemes with parameters (G,K,m, n) enable mapping a set of n item
into a table T of sizem usingK hash functions (hi)i≤K such that each bin in T has at most
one item. The algorithm takes an item x ∈ G and inserts it into the bin T [h1(x)], if this bin
is occupied then evicts the item in this bin and relocates it using h2, this process continues
until all items are inserted in table T . The hashing algorithm can fail if a cycle eviction is
found or a threshold number of relocations has been performed, this failure can be avoided
with high probability by choosing appropriate parameters (K,m, n) or using a stash to store

5.8 Faster Seed Expansion from Hashing 149

the last item in each cycle eviction if it exists [PSW+18]. Here, we choose the parameters
such that K = 2,m = 2n [BC23; RS21], and do not use a stash. Looking ahead, this will
imply that insertion will have a noticeable failure probability; however, we will show that in
this case, the trusted dealer can simply re-sample the noise vector until insertion succeeds.
This induces a small bias on the noise, but a straightforward reduction shows that it does not
harm the security of the underlying syndrome decoding assumption (if the insertion fails with
probability α, then the reduction loses a factor α in the advantage). ForK = 2,m = 2n, the
failure probability of Cuckoo hashing is known to be

√
2/3+ o(1) [KD08], which translates to

a small constant security loss. We note in passing that the same observation applies to the use
of Cuckoo hashing in a previous work [SGR+19] and allows them to reduce the computational
overhead of their LPN-based construction from 3 to 2 compared to their regular LPN-based
construction.

2. Simple hashing with parameters (G,K,m) uses K hash functions (hi)i≤K to insert each
item x ∈ G to the bin B[hi(x)] of a table B of size m. With very high probability, for
m = O(n log n) bins, the maximum possible items per bin is O(logm). In particular, by
the randomness of hash functions, with high probability, the maximum number of items per
bin (denoted as max_load) is bounded by 3 lnm

ln lnm . That is, Pr
[
max_load ≥ 3 lnm

ln lnm

]
≤ 1

m . To
estimate our concrete efficiency, we highlight the total number of items in all bins always is
K · |G| since each item in G is mapped to K bins using differentK hash functions.

OLE from hashing techniques

In our construction we have G =
∏n

i=1 Z/(q − 1)Z. Because we are working over F4, |G| = 3n. We
later work on “balls and bins” where each bin has a different number of balls and is associated with a
DPF to distributed shares of a point vector then we make use of notation DPFn for DPF scheme
with arbitrary domain [n].

We reuse all notations defined in Section 5.3.5, the intuition of the construction is the same
as in Section 5.3.5 except that we provide a more efficient way to distribute the position of noise
coordinates before using the DPF to give each party the shares of point vector. Briefly, to construct
an OLE correlation over the ringR, we want to give the parties shares of x0 · x1. Note that x0 · x1 is
a degree-2 function in (e0, e1); therefore, it suffices to share e0 ⊗ e1. Since e0, e0 ∈ Rc

t both are
sparse vectors of weight t overRt, where the product of two sparse vectors is a sparse vector with
sparsity t2. So the goal here is to securely distribute the tensor e0 ⊗ e1 to both parties as in other
existing PCGs (Figure 5.3 and Figure 5.2). Note that eσ = (eσ0 , · · · , eσc−1), σ ∈ {0, 1}, and each
random eσi ∈ Rt is defined by a pair of vectors pi

σ ∈ Gt and vi
σ ∈ Ft

3, which can be considered as
the set of positions of non-zero entries of a vector over Rt and the corresponding values of these
entries.

Then, e0 ⊗ e1 is defined as a vector over Rt2 , where (vi
0 ⊗ vj

1)[k], with k ∈ [t2], is the value of
the entry at position (pi

0 ⊗ pj
1)[k].

Now, the seed generation and seed expansion are processed as follows. Simple hashing is applied
to all elements in the groupG to get a tableB of sizemwhere each bin in this table contains elements
of G and items in all bins are sorted in some canonical order. Then Gen uses Cuckoo hashing and
distributes each entry (pi

0 ⊗ pj
1)[k] of pi

0 ⊗ pj
1 to only one bin (denote lk) of a table T of size

m = O(t2) while in simple hashing this entry is inserted to K bins {i1, · · · , iK} instead of one
(note that lk ∈ {i1, · · · , iK}), then

1. For bin lk, using DPF|Blk
|.Gen to generate keys such that the point function is defined by

position in bin lk where (pi
0 ⊗ pj

1)[k] is inserted and the value output shared is (vi
0 ⊗ vj

1)[k],

150 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

2. For other bins {i1, · · · , iK} \ {lk}, in the position where (pi
0 ⊗ pj

1)[k] is inserted, the value
shared is 0.

The formal constructions of key generation and key expansion are shown in Figure 5.19 and Fig-
ure 5.20 respectively.

Figure 5.19: Seed generation of fQA-SDOLE based on QA-SD and hashing techniques

Parameters: Security parameter λ, noise weight t = t(λ), compression factor c = 4, ring R =
F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3

n − 1).
• An DPFn scheme (DPFn.Gen,DPFn.FullEval) with an arbitrary domain [n] and range F4.

• K hash functions h1, · · · , hK : G→ [m].

• Cuckoo hashing and simple hashing schemes with parameters (G,K,m, t2) and (G,K,m)
respectively where m = O(t2).

Public Input: c− 1 vectors of length 3n over F4, for a1, · · · , ac−1 ∈ R.

fQA-SD.Gen (1λ):
1: foreach σ ∈ {0, 1}, i ∈ [0 . . . c):

1.1: Sample random vectors pi
σ ← (piσ,1, · · · , piσ,t)pi

σ,j∈G and vi
σ ← (F3)

t.

2: Hashing algorithm:
2.1: Use simple hashing scheme (G,K,m) to get a table B having m bins (Bi)i≤m such that:

Bi = {x ∈ G | ∃j ∈ [K] ∧ hj(x) = i}.

Each bin is sorted in some canonical order.
2.2: foreach i, j ∈ [0 . . . c):

2.2.1: Use the Cuckoo hashing scheme (G,K,m, t2) to insert pi,j := pi
0 ⊗ pj

1 to table Ti,j .
We denote each k-th entry value pi,j [k] of vector pi,j is inserted to the bin lk ∈ [m] of
table Ti,j i.e. Ti,j [lk] = pi,j [k] and when considering in bin Blk of table B (obtained
from simple hashing), denote the position of pi,j [k] as rk i.e. Blk [rk] = pi,j [k].

3: foreach i, j ∈ [0 . . . c), lk ∈ [m]:
3.1: If pi,j [k] = Ti,j [lk] and pi,j [k] = Blk [rk], sample DPF keys for each bin Blk :

(Ki,j
0,lk

,Ki,j
1,lk

)← DPF|Blk
|.Gen(1

λ, rk,v
i
0 ⊗ vj

1[k]).

3.2: Otherwise, generate randomly rk ←R |Blk | and sample DPF keys:

(Ki,j
0,lk

,Ki,j
1,lk

)← DPF|Blk
|.Gen(1

λ, rk, 0).

4: Let kσ = (Ki,j
σ,lk

)i,j∈[0...c),lk∈[m], ((p
i
σ,v

i
σ)i∈[0...c)).

5: Output (k0, k1).

Theorem 5.8.1. LetR = F4[G] = F4[X1, . . . , Xn]/(X
3
1 − 1, . . . , X3

n − 1) where G =
∏n

i=1 Z/3Z.
Assume thatDPFn is a secure FSS scheme for point function with domain n and that theQA-SD(c, t,G)
assumption holds. Then, there exists a generic construction scheme to construct a PCG to produce one
OLE correlation (described in Figure 5.19 and Figure 5.20). Using the DPF [BGI16] based on a PRG
G : {0, 1}λ → {0, 1}2λ+2 and Cuckoo hashing scheme parameters (G,K,m, t2) then we obtain:

5.8 Faster Seed Expansion from Hashing 151

Figure 5.20: Seed expansion of fQA-SDOLE based on QA-SD and hashing techniques

fQA-SD.Expand (σ, kσ):
1: Parse kσ as ((Ki,j

σ,lk
)i,j∈[0...c),lk∈[m], ((p

i
σ,v

i
σ)i∈[0...c)).

2: foreach i ∈ [0 . . . c):
2.1: Define the element ofRt:

eiσ =
∑

j∈[0...t)

vi
σ[j] · pi

σ[j].

3: Compute xσ = ⟨a, eσ⟩, where a = (1, a1, · · · , ac−1), eσ = (e0σ, · · · , ec−1
σ).

4: foreach i, j ∈ [0 . . . c):
4.1: ∀k ∈ [m], compute wσ,k ← DPF|Bk|.FullEval(σ,K

i,j
σ,k).

4.2: foreach k ∈ |G|:
4.2.1: ∀l ∈ [1,K], compute hl(k) = lk , then find the bin rk of k in bin Blk i.e., k = Blk [rk].
4.2.2: Define a vector uσ,i+cj overR such that uσ,i+cj [k] =

∑K
l=1 wσ,lk [rk].

4.3: View the set of uσ,i+cj as a c2 vector uσ of element inR.
5: Compute zσ = ⟨a⊗ a,uσ⟩.
6: Output xσ, zσ .

• Each party’s seed has maximum size: c2 · (0.9m) · ((log(3)n− log t+ 1) · (λ+ 2) + λ+ 2) +
4t · (log(3)n+ 2) bits.

• The computation of Expand can be done with at most (2 + ⌊2/λ⌋) · (K3n) · c2 PRG operations,
and O(c2 · (log(3)n) · 3n) operations in F4.

Proof sketch. The security of our construction is based on the security of FSS scheme and is followed
the same as in [BCG+20b; BCC+23] since (1) The parameter of the simple hashing scheme is public
then both parties can self-compute the table B obtained from this scheme (2) and pi

0 ⊗ pj
1 and

vi
0 ⊗ vj

1 are mapped to the table Ti,j by using Cuckoo hashing scheme later they are inputs of DPF.
Now we argue the correctness and efficiency in turn.

Correctness. First, note that

ei0 · e
j
1 =

 ∑
k∈[0...t)

vi
σ[k] · pi

σ[k]

 ·
 ∑

l∈[0...t)

vj
σ[l] · pj

σ[l]

=

∑
k,l∈[0...t)

(
vi
0[k] · v

j
1[l]
)
·
(
pi
0[k] · p

j
1[l]
)
=

∑
k∈[0...t2)

(vi
0 ⊗ vj

1)[k] · (p
i
0 ⊗ pj

1)[k].

Observe that u0,i+cj [k] + u1,i+cj [k] =
∑K

l=1 (w0,lk [rk] +w1,lk [rk]) then from the correctness of
DPF:

1. If k ∈ Ai,j i.e., k is inserted to table Ti,j using Cuckoo hashing scheme, denote t as the bin of
Ti,j where k is inserted then:

u0,i+cj [k] + u1,i+cj [k] = w0,t[rk] +w1,t[rk] = (vi
0 ⊗ vj

1)[k].

152 FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits

2. Otherwise, k /∈ Ai,j then u0,i+cj [k] + u1,i+cj [k] = 0.

Therefore,

u0 + u1 = ⟨a⊗ a, e0 ⊗ e1⟩ = ⟨a, e0⟩ · ⟨a, e1⟩ = x0 · x1.

Efficiency. We show how to obtain the party’s seed size and the computation cost of Expand
in Theorem 5.8.1 by using two optimizations which are tailored on the choice of Cuckoo’s parameters
(to reduce the number of bins) and regular noise distribution (to reduce a factor t in the number of
PRG calls).

The formulas we get are adapted from [BCG+20b; BCC+23] for |G| = 3n and followed by our
optimizations.

1. Party’s seed size, since we have m bins and each bin (Bi)i∈[m] needs to use a DPF|Bi| scheme
so in total, we have (m · c2) pairs of keys (Ki,j

σ,lk
)i,j∈[0...c),lk∈[m] having a size of

c2 ·m · ((log(3)n− log t+ 1) · (λ+ 2) + λ+ 2) + 4t · (log(3)n+ 2).

We make an observation that since the number of bins m is defined to avoid the failure of the
Cuckoo hashing scheme. However, because the distributed key generation phase is honestly
executed, we allow the Cuckoo hashing scheme to fail with an acceptable probability (say 90%
of standard experimental failure probability [PSW+18]). In the case of failure, then we repeat
the Cuckoo hashing scheme (with a new set of functions) until it succeeds (the number of
repetitions is very small in expectation). This leads to an optimization for the number of bins
m to be reduced to 0.9m while the trade-off in security is reasonable (the adversary knows
the distribution of noise sampled has to make sure the Cuckoo hashing succeeds while the
number of bins is only 0.9m). Then, the seed size is reduced roughly to

c2 · (0.9m) · ((log(3)n− log t+ 1) · (λ+ 2) + λ+ 2) + 4t · (log(3)n+ 2).

2. For the number ofPRG calls in seed expansion, in each bin (Bi)i∈[m], we make use of aDPF|Bi|
with domain |Bi| and from the property of simple hashing scheme

∑
i≤m |Bi| = K · |G| then

the number of PRG operations is at most (2 + ⌊2/λ⌋) · (K3n) · c2 (reduced by a factor t from
the regular noise distribution).

5.8.2 Application of OLE over F4 to Silent OT Extension

In this section, we show how to convert an F4-OLE into a random 1-out-of-2 OT in F2 using a single
bit of communication. To explain the observation, let us consider two parties, Alice and Bob, holding
respectively (a, [[ab]]4A) and (b, [[ab]]4B) for a and b ∈ F4. We have

a · b = [[a · b]]4A(0) + [[a · b]]4B(0) + ([[a · b]]4A(1) + [[a · b]]4B(1))θ
= (a(0) · b(0) + a(1) · b(1)) + (a(0) · b(1) + a(1) · b(0) + a(1) · b(1)) · θ,

where θ is the primitive root of X2 +X + 1. Considering only the (a · b)(1) term from the above
equation (i.e., the parts multiplied by θ, while in conversion from single OLE to Beaver triple over F2

the part taken is without θ), we get that

(a · b)(1) = [[a · b]]4A(1) + [[a · b]]4B(1) = a(0) · b(1) + a(1) · b(0) + a(1) · b(1),

5.8 Faster Seed Expansion from Hashing 153

and therefore,

[[a · b]]4A(1)
known by A

+ a(1) · (b(0) + b(1)) = a(0) · b(1) + [[a · b]]4B(1)
known by B

.

If Bob sends (b(0) + b(1)) to Alice then the equation becomes

[[a · b]]4A(1) + a(1) · (b(0) + b(1))

known by A

= a(0) · b(1) + [[a · b]]4B(1)
known by B

.

It turns out that if Alice as a receiver in OT sets t = a(0),mt = [[a · b]]4A(1) + a(1) · (b(0) + b(1))
and Bob as a sender in OT sets m0 = [[a · b]]4B(1),m1 := b(1) + [[a · b]]4B(1) then we have an
instantiation of 1-out-of-2 OT over F2. The correctness is followed by the above equation and
security is straightforward: the only communication between the parties is sending b(0) + b(1) from
Bob to Alice, which is a uniform random bit in the view of Alice (from the randomness of OLE).

Efficiency. To get 3n random OT, our main QA-SDOLE PCG needs 2(c2 · t) PRG calls (omitting
some common factors) along with a factor-64 speedup from the early termination optimization while
fQA-SD only needs (K · c2) PRG calls where K = 2, t = 27 (see full version [BBC+24] for details)
and can be optimized by the same optimizations. Hence, we estimate to get 3N -OT over F2, fQA-SD
can be about 30× faster in terms of computation compared to [RRT23], since the cost of QA-SDOLE

is essentially on par with that of [RRT23] (see Section 5.3 for detail).

Chapter 6
Conclusion

6.1 Conclusion

This thesis studies Multi-Party Computation (MPC) in the correlated randomness model. We present
several contributions centered around Pseudorandom Correlation Generators (PCGs) and Pseudo-
random Correlation Functions (PCFs), specifically in the context of Private Set Intersection (PSI),
Zero-Knowledge Proofs (ZKPs), and Multi-Party Computation (MPC) for boolean circuit. The contri-
butions revolve around three key areas:
• Enhancing PSI Efficiency. We have developed new protocols for PSI, leveraging vector OLE as a
PCG. These protocols offer significant improvements in communication efficiency, particularly
when dealing with databases containing small entries. We introduce a semi-honest PSI proto-
col that integrates subfield vector OLE with hash-based techniques, achieving communication
complexity that is independent of the computational security parameter. We also extend this to
a malicious setting using the dual execution technique, which ensures that the communication
remains unaffected by security parameters. Additionally, we present a maliciously secure PSI
protocol in the standard model, utilizing subfield ring-OLE and the ring-LPN assumption. This
protocol is highly efficient and batchable, allowing for reused messages to compute intersections
across multiple servers.

• Designated-Verifier Zero-Knowledge Proofs (ZKPs). We have introduced a compiler for converting
zero-knowledge proofs for SIMD circuits into general circuits efficiently. This compiler improves
communication complexity for general circuits by reducing the cost of the state-of-the-art from
O(C3/4) to O(C1/2). Additionally, we have demonstrated how a new public-key PCFs, which we
introduce, can be used to construct reusable Designated-Verifier Non-Interactive Zero-Knowledge
Proofs (DV-NIZKs) for NP. This approach upgrades non-reusable DV-NIZKs into reusable ones,
providing efficient public-key PCF-based OT for secure communication between parties.

• FOLEAGE-basedMPC for Boolean Circuits. We have proposed F4OLEAGE, a preprocessing protocol
tailored for efficient MPC involving Boolean circuits, providing semi-honest security and tolerating
up to N − 1 corruptions. F4OLEAGE is highly efficient, generating over 12 million multiplication
triples per second in a two-party setting, whileminimizing communication during the preprocessing
phase. By utilizing PCGs for multiplication triples over the field F4, we improve the efficiency of
the offline phase in MPC protocols. F4OLEAGE significantly outperforms existing methods in both
two-party and multi-party settings, offering faster execution and lower communication overhead.

156 Conclusion

These contributions, discussed in detail within the thesis, showcase the impact of PCGs and PCFs on
optimizing protocols in cryptographic applications, pushing the boundaries of efficiency and security
for PSI, ZKPs, and MPC.

6.2 Open Questions
For future research direction, we would like to address some open question as follow.

• Application of PCGs/PCFs for PSI:

1. Standard PSI. The current state-of-the-art for standard PSI relies on subfield-vector OLE.
Efficiency is crucial for PSI due to its wide range of practical applications in real-world
scenarios. Optimizing the efficiency of PCGs/PCFs directly enhances PSI performance. A
promising direction is exploring how PCGs/PCFs can be adapted to improve the efficiency of
the PSI framework. Additionally, investigating the use of PCGs/PCFs to construct variants
of PSI, such as PSI-Sum, PSI-Cardinality, or threshold PSI, presents an exciting avenue for
future research.

2. Fuzzy PSI. Fuzzy structured-aware PSI in high dimensions is designed to enable one party
to learn the output even with a small fuzzy error. In particular, in fuzzy structured-aware
PSI, the receiver holds N balls of radius σ and dimension d and the sender holds a set of M
points. In the end, the receiver learns which of the sender’s points inside one of their balls.
The initial construction of fuzzy structured-aware PSI uses Function Secret Sharing as one of
the central techniques to instantiate the construction. We aim to further investigate this area,
with a focus on improving efficiency and strengthening security guarantees.

• Zero-Knowledge Proofs based on PCGs/PCFs:

1. Sublinear ZKP based on VOLE for Circuit Satisfiability. Our current construction is a private coin
ZKP, since the Information-theoretic polynomial authentication code (IP-PAC) is constructed
from additive homomorphic encryption (AHE). Turning it into a public coin using techniques
such as VOLE-in-the-Head is a possible direction. An open question is whether we can
achieve a publicly verifiable ZKP based on PCGs/PCFs with sublinear communication and
linear computation complexity, with a small linear factor. Exploring streaming ZK proofs
based on PCGs/PCFs is another promising direction.

2. DV-NIZK based on Public-Key PCF. Our DV-NIZK scheme is built from non-interactive OT,
instantiated from PK-PCF-based OT. The efficiency of our DV-NIZK relies on the underlying
PK-PCF. As a result, further research into PK-PCFs can lead to advancements in DV-NIZK ap-
plications. Improving the efficiency of PK-PCFs can be achieved by optimizing the distributed
key generation process. In the long term, post-quantum PK-PCFs would be advantageous,
which would require key generation and silent expansion to be realized from post-quantum
assumptions. Currently, PK-PCFs have only been instantiated for OTs and VOLEs, exploring
other correlations, such as OLEs, is a natural next step.

• MPC-based OLE for Boolean Circuits: In our FOLEAGE-based MPC for Boolean circuits,
we construct PCG-based OLEs in F4, and subsequently achieve OLEs over F2 with additional
communication. Whether it is possible to achieve PCF-based OLEs in F2 remains an open question.
Answering this question directly will lead to more efficient MPC-based OLE for Boolean circuits.

List of Figures

2.1 Fn,F
VOLE in the malicious setting . 28

2.2 Fn,Q
rOLE,F

F
OLE in the malicious setting . 29

2.3 (Weakly) Pseudorandom Y-correlated outputs of a (w)PCF 30
2.4 Security of a wPCF . 31
2.5 Strongly Pseudorandom Y-correlated outputs of a sPCF 32
2.6 Strong PCF Security . 32
2.7 Expzk,0A (1λ) and Expzk,1A (1λ) . 35
2.8 Distinghuish games between outputs of oraclesOprove(crs, x, w) andOsim(crs, T , x, w),

for the (adaptive) multi-theorem zero-knowledge property of a non-interactive argu-
ment system. A outputs b ∈ {0, 1}. 35

2.9 Fpsi in the malicious setting . 36
2.10 FZK Ideal Functionality for Interactive Zero-Knowledge Proofs 36
2.11 FCom Ideal Functionality for Commitment . 37

3.1 Ideal functionality Foprf . 50
3.2 Our batch BaRK-OPRF Πoprf based on subVOLE . 52
3.3 Our new semi-honest PSI protocol from BaRK-OPRF 56
3.4 Our malicious PSI protocol based on Foprf . 58
3.5 Our second malicious PSI protocol based on Foprf via dual execution 61
3.6 Augmented semi-honest PSI protocol based on ring-OLE 67
3.7 Maliciously secure PSI protocol in the FsOLE-hybrid model 69

4.1 Functionality of SIMD ZK FSIMDZK . 76
4.2 Functionality of extended SIMD zero-knowledge FeSIMDZK 77
4.3 The protocol for extended SIMD ZK from SIMD ZK ΠeSIMDZK 79
4.4 Generic ZK in the FeSIMDZK hybrid Πcompiler . 82
4.5 Generic ZK in limited-memory scenario Πsmall−space 84
4.6 The protocol of SIMDZK from AntMan ΠAntMan . 85
4.7 Protocol for generating IT-PACs Πk

IT-PAC . 86
4.8 The protocol of SIMDZK from AntMan (Cont.) ΠAntMan (Cont.) 87
4.9 Σ-protocol with challenge space {0, 1} . 91
4.10 PK-PCF for OT correlation . 92
4.11 Strong security of a PK-PCF . 93
4.12 Reusable DV-NIZK Π(Setup,P,V) . 94

158 LIST OF FIGURES

5.1 Functionality QA-SDOLE−Setup . 125
5.2 General construction of QA-SDOLE . 126
5.4 Early termination example in the case we truncate only two steps earlier. Solid black

nodes represent “zero” leaves, whereas solid red leaves can take on any value. . . . 128
5.3 QA-SDOLE for F4OLEAGE overR from evaluations of functions 129
5.5 Representation of a vector of F4 elements. Red blocks represent the high-order bits

while the blue blocks represent low-order bits. 130
5.6 Fast-Evaluation algorithm . 131
5.7 Construction of Ternary rDPF . 133
5.8 FrDPF-CW for computing the correction words . 136
5.9 Protocol ΠrDPF-CW for computing the correction words 137
5.10 Ideal functionality

(
1
3

)
-OT in the semi-honest setting 137

5.11 Ideal functionality FrDPF-DKG for distributed key generation 138
5.12 Protocol ΠrDPF-DKG for Distributed Key Generation 139
5.13 Ideal functionality FOutput-CW with message β . 141
5.14 Protocol ΠOutput-CW for computing the last CWs with constraint β 142
5.15 Ideal Functionality FcBT(F) for sampling N -party Beaver triples 146
5.16 N -party protocol ΠBT(F4 → F2) . 146
5.17 Ideal Functionality F-OLE(F) for sampling an OLE 147
5.18 A 2-party protocol Π(F4OLE→ F2BT) . 148
5.19 Seed generation of fQA-SDOLE based on QA-SD and hashing techniques 150
5.20 Seed expansion of fQA-SDOLE based on QA-SD and hashing techniques 151

List of Tables

3.1 Comparison of the communication cost of several PSI protocols in the semi-honest
setting and in the malicious setting, for various choices of the database size n (we
assume that both parties have a database of the same size). ℓ denote the bit-length of
the inputs in the database; we set the statistical security parameter κ to 40 (for usual
applications) or 30 (which can be suitable for lower risk applications). 43

3.2 Comparison of the communication cost of several PSI protocols in the malicious
model, for various choices of the database size n (we assume that both parties have a
database of the same size) and statistical security parameter κ = 40. ℓ denote the
bit-length of the inputs in the database. 45

4.1 Performance of AntMan++ with variable batch size. Benchmarked with 1 thread, 50
Mbps bandwidth and circuit size C = 227. 74

4.2 Performance of AntMan++ with variable threads and bandwidth. Benchmarked with
circuit size C = 227 and batch size B = 211. Numbers are in seconds. 74

5.1 Comparison of state-of-the-art protocols to generate N -party Beaver triples over
F2 for N = 10 and N = 2 parties. The localhost column reports the runtimes
(ignoring communication) for generating 109 triples. All protocols run on one core
of AWS c5.metal (3.4GHz CPU); all runtimes averaged across ten trials. 115

5.2 Reestimation of the security for the parameters given in [BCC+23]. They were
considered to yield more than 128 bits of security, they were even considered to be
conservative. Note that in [BCC+23], all the parameters were for q = 3. Here t is
the number of errors per block, while in [BCC+23] it was the total number of errors.
nfold and kfold are respectively the length and dimension of the folded code. Niter is
the number of different foldings necessary to run the attack, and ω0 is the optimal
target weight. 143

5.3 Performance of our SPFSS (for the sum of 730 DPFs) on two EC2 instances and
comparison to the raw AES computation time required for the PRG evaluations. . . 144

5.4 Performance of our FFT implementation over F4 on two different EC2 instances.
Packing increases throughput almost linearly with the packing size. However, with a
large number of variables (> 16), it is more efficient to use smaller packing values to
avoid the increased memory usage from the recursive FFT function calls. 144

160 LIST OF TABLES

5.5 Performance of our PCG implementation on two different EC2 instances. We set the
noise parameter to t = 27 and let c = 4 in the left table (our conservative parameter
choice) and c = 3 in the right table (our aggressive parameter choice); D = 318 ran
out of memory on the t2.large. 145

Bibliography

[AMZ21] Aydin Abadi, Steven J. Murdoch, and Thomas Zacharias. Polynomial Representation Is
Tricky: Maliciously Secure Private Set Intersection Revisited. Cryptology ePrint Archive,
Report 2021/1009. https://ia.cr/2021/1009. 2021.

[ABP15] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. “An Algebraic Frame-
work for Pseudorandom Functions and Applications to Related-Key Security”. In:
CRYPTO 2015, Part I. Ed. by Rosario Gennaro and Matthew J. B. Robshaw. Vol. 9215.
LNCS. Springer, Heidelberg, Aug. 2015, pp. 388–409. doi: 10.1007/978-3-662-47989-6_19.

[ABB+24] Masayuki Abe, David Balbás, Dung Bui, Miyako Ohkubo, Zehua Shang, and Mehdi
Tibouchi. Critical Round in Multi-Round Proofs: Compositions and Transformation to
Trapdoor Commitments. ePrint Archive. Available at https://eprint.iacr.org/2024/252.
2024.

[ADD+23] Martin R. Albrecht, Alex Davidson, Amit Deo, and Daniel Gardham. Crypto Dark Matter
on the Torus: Oblivious PRFs from shallow PRFs and FHE. Cryptology ePrint Archive,
Report 2023/232. https://eprint.iacr.org/2023/232. 2023.

[AHI+17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
“Ligero: Lightweight Sublinear Arguments Without a Trusted Setup”. In: ACM CCS
2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu.
ACM Press, Oct. 2017, pp. 2087–2104. doi: 10.1145/3133956.3134104.

[AS20] Hossein Amiri and Asadollah Shahbahrami. “SIMD programming using Intel vector
extensions”. In: J. Parallel Distrib. Comput. 135.C (Jan. 2020), pp. 83–100. issn: 0743-7315.
doi: 10.1016/j.jpdc.2019.09.012.

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. “Se-
cure Arithmetic Computationwith Constant Computational Overhead”. In:CRYPTO 2017,
Part I. Ed. by Jonathan Katz andHovav Shacham. Vol. 10401. LNCS. Springer, Heidelberg,
Aug. 2017, pp. 223–254. doi: 10.1007/978-3-319-63688-7_8.

[AL16] Benny Applebaum and Shachar Lovett. “Algebraic attacks against random local func-
tions and their countermeasures”. In: 48th ACM STOC. Ed. by Daniel Wichs and Yishay
Mansour. ACM Press, June 2016, pp. 1087–1100. doi: 10.1145/2897518.2897554.

[AMN+18] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi
Yamakawa. “Constrained PRFs for NC1 in Traditional Groups”. In: CRYPTO 2018,
Part II. Ed. by Hovav Shacham and Alexandra Boldyreva. Vol. 10992. LNCS. Springer,
Heidelberg, Aug. 2018, pp. 543–574. doi: 10.1007/978-3-319-96881-0_19.

https://ia.cr/2021/1009
https://doi.org/10.1007/978-3-662-47989-6_19
https://eprint.iacr.org/2024/252
https://eprint.iacr.org/2023/232
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1016/j.jpdc.2019.09.012
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1145/2897518.2897554
https://doi.org/10.1007/978-3-319-96881-0_19

162 BIBLIOGRAPHY

[BBH+22] Laasya Bangalore, Rishabh Bhadauria, Carmit Hazay, and Muthuramakrishnan Venki-
tasubramaniam. “On Black-Box Constructions of Time and Space Efficient Sublinear
Arguments from Symmetric-Key Primitives”. In: TCC 2022, Part I. Ed. by Eike Kiltz and
Vinod Vaikuntanathan. Vol. 13747. LNCS. Springer, Heidelberg, Nov. 2022, pp. 417–446.
doi: 10.1007/978-3-031-22318-1_15.

[BGM+20] James Bartusek, Sanjam Garg, Daniel Masny, and Pratyay Mukherjee. “Reusable Two-
Round MPC from DDH”. In: TCC 2020, Part II. Ed. by Rafael Pass and Krzysztof Pietrzak.
Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 320–348. doi: 10.1007/978-3-
030-64378-2_12.

[BMR+21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. “Mac’n’Cheese:
Zero-Knowledge Proofs for Boolean and Arithmetic Circuits with Nested Disjunctions”.
In: CRYPTO 2021, Part IV. Ed. by Tal Malkin and Chris Peikert. Vol. 12828. LNCS. Virtual
Event: Springer, Heidelberg, Aug. 2021, pp. 92–122. doi: 10.1007/978-3-030-84259-8_4.

[Bea92] Donald Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”. In: CRYP-
TO’91. Ed. by Joan Feigenbaum. Vol. 576. LNCS. Springer, Heidelberg, Aug. 1992, pp. 420–
432. doi: 10.1007/3-540-46766-1_34.

[Bea96] Donald Beaver. “Correlated Pseudorandomness and the Complexity of Private Compu-
tations”. In: 28th ACM STOC. ACM Press, May 1996, pp. 479–488. doi: 10.1145/237814.
237996.

[BM90] Mihir Bellare and Silvio Micali. “Non-Interactive Oblivious Transfer and Applications”.
In: CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. LNCS. Springer, Heidelberg, Aug. 1990,
pp. 547–557. doi: 10.1007/0-387-34805-0_48.

[Ber06] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In: PKC 2006.
Ed. by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Vol. 3958. LNCS.
Springer, Heidelberg, Apr. 2006, pp. 207–228. doi: 10.1007/11745853_14.

[BCC+13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive composition
and bootstrapping for SNARKS and proof-carrying data”. In: 45th ACM STOC. Ed. by
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM Press, June 2013, pp. 111–
120. doi: 10.1145/2488608.2488623.

[BC12] Nir Bitansky and Alessandro Chiesa. “Succinct Arguments from Multi-prover Interac-
tive Proofs and Their Efficiency Benefits”. In: CRYPTO 2012. Ed. by Reihaneh Safavi-
Naini and Ran Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 255–272.
doi: 10.1007/978-3-642-32009-5_16.

[BG22] Alexander R. Block and Christina Garman. Honest Majority Multi-Prover Interactive
Arguments. Cryptology ePrint Archive, Report 2022/557. https://eprint.iacr.org/2022/557.
2022.

[BHR+20] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik Soni.
“Public-Coin Zero-Knowledge Arguments with (almost) Minimal Time and Space
Overheads”. In: TCC 2020, Part II. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12551.
LNCS. Springer, Heidelberg, Nov. 2020, pp. 168–197. doi: 10.1007/978-3-030-64378-2_7.

[BHR+21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. “Time- and Space-Efficient Arguments from Groups of Unknown Order”. In:
CRYPTO 2021, Part IV. Ed. by Tal Malkin and Chris Peikert. Vol. 12828. LNCS. Virtual
Event: Springer, Heidelberg, Aug. 2021, pp. 123–152. doi: 10.1007/978-3-030-84259-8_5.

https://doi.org/10.1007/978-3-031-22318-1_15
https://doi.org/10.1007/978-3-030-64378-2_12
https://doi.org/10.1007/978-3-030-64378-2_12
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/237814.237996
https://doi.org/10.1007/0-387-34805-0_48
https://doi.org/10.1007/11745853_14
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-642-32009-5_16
https://eprint.iacr.org/2022/557
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-84259-8_5

BIBLIOGRAPHY 163

[Blu86] Manuel Blum. How to Prove a Theorem So No One Else Can Claim It. Invited 45 minute
address to the International Congress of Mathematicians, 1986. To appear in the Pro-
ceedings of ICM 86. Aug. 1986. url: http://www.mathunion.org/ICM/ICM1986.2/Main/

icm1986.2.1444.1451.ocr.pdf.
[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Interactive Zero-Knowledge and

Its Applications (Extended Abstract)”. In: 20th ACM STOC. ACM Press, May 1988,
pp. 103–112. doi: 10.1145/62212.62222.

[BCD+09] Peter Bogetoft et al. “Secure Multiparty Computation Goes Live”. In: Financial Cryptog-
raphy and Data Security. Ed. by Chris Clifford. Vol. 5628. Lecture Notes in Computer
Science. Accessed: 2024-11-10. Springer, Berlin, Heidelberg, 2009, pp. 325–343. doi:
10.1007/978-3-642-00468-1_2. url: https://link.springer.com/chapter/10.1007/978-3-

642-00468-1_2.
[BBC+24] Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, Clément Ducros, and

Sacha Servan-Schreiber. “FOLEAGE:F4OLE-BasedMulti-party Computation for Boolean
Circuits”. In: Advances in Cryptology – ASIACRYPT 2024. Ed. by Kai-Min Chung and
Yu Sasaki. Singapore: Springer Nature Singapore, 2024, pp. 69–101. isbn: 978-981-96-
0938-3.

[BCC+23] Maxime Bombar, Geoffroy Couteau, Alain Couvreur, and Clément Ducros. “Correlated
Pseudorandomness from the Hardness of Quasi-Abelian Decoding”. In: CRYPTO 2023,
Part IV. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14084. LNCS. Springer,
Heidelberg, Aug. 2023, pp. 567–601. doi: 10.1007/978-3-031-38551-3_18.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. “Hierarchical Identity Based Encryption
with Constant Size Ciphertext”. In: EUROCRYPT 2005. Ed. by Ronald Cramer. Vol. 3494.
LNCS. Springer, Heidelberg, May 2005, pp. 440–456. doi: 10.1007/11426639_26.

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. “Exploring
Crypto Dark Matter: New Simple PRF Candidates and Their Applications”. In: TCC 2018,
Part II. Ed. by Amos Beimel and Stefan Dziembowski. Vol. 11240. LNCS. Springer,
Heidelberg, Nov. 2018, pp. 699–729. doi: 10.1007/978-3-030-03810-6_25.

[BCH+22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. “Gemini: Elastic
SNARKs for Diverse Environments”. In: EUROCRYPT 2022, Part II. Ed. byOrr Dunkelman
and Stefan Dziembowski. Vol. 13276. LNCS. Springer, Heidelberg, May 2022, pp. 427–
457. doi: 10.1007/978-3-031-07085-3_15.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Composition without
a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021. https://eprint.iacr.org/
2019/1021. 2019.

[BCG+18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. “Compressing Vector
OLE”. In: ACM CCS 2018. Ed. by David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang. ACM Press, Oct. 2018, pp. 896–912. doi: 10.1145/3243734.3243868.

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and
Peter Scholl. “Correlated Pseudorandomness from Expand-Accumulate Codes”. In:
CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13508. LNCS.
Springer, Heidelberg, Aug. 2022, pp. 603–633. doi: 10.1007/978-3-031-15979-4_21.

http://www.mathunion.org/ICM/ICM1986.2/Main/icm1986.2.1444.1451.ocr.pdf
http://www.mathunion.org/ICM/ICM1986.2/Main/icm1986.2.1444.1451.ocr.pdf
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-642-00468-1_2
https://link.springer.com/chapter/10.1007/978-3-642-00468-1_2
https://link.springer.com/chapter/10.1007/978-3-642-00468-1_2
https://doi.org/10.1007/978-3-031-38551-3_18
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-030-03810-6_25
https://doi.org/10.1007/978-3-031-07085-3_15
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1007/978-3-031-15979-4_21

164 BIBLIOGRAPHY

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and
Peter Scholl. “Efficient Two-Round OT Extension and Silent Non-Interactive Secure
Computation”. In: ACM CCS 2019. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz. ACM Press, Nov. 2019, pp. 291–308. doi: 10.1145/3319535.
3354255.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
“Efficient Pseudorandom Correlation Generators: Silent OT Extension and More”. In:
CRYPTO 2019, Part III. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11694.
LNCS. Springer, Heidelberg, Aug. 2019, pp. 489–518. doi: 10.1007/978-3-030-26954-8_16.

[BCG+20a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
“Correlated Pseudorandom Functions from Variable-Density LPN”. In: 61st FOCS. IEEE
Computer Society Press, Nov. 2020, pp. 1069–1080. doi: 10.1109/FOCS46700.2020.00103.

[BCG+20b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
“Efficient Pseudorandom Correlation Generators from Ring-LPN”. In: CRYPTO 2020,
Part II. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. LNCS. Springer,
Heidelberg, Aug. 2020, pp. 387–416. doi: 10.1007/978-3-030-56880-1_14.

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. “Homo-
morphic Secret Sharing: Optimizations and Applications”. In: ACM CCS 2017. Ed. by
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. ACM Press,
Oct. 2017, pp. 2105–2122. doi: 10.1145/3133956.3134107.

[BCM23] Elette Boyle, Geoffroy Couteau, and Pierre Meyer. “Sublinear-Communication Secure
Multiparty Computation Does Not Require FHE”. In: EUROCRYPT 2023, Part II. Ed. by
Carmit Hazay and Martijn Stam. Vol. 14005. LNCS. Springer, Heidelberg, Apr. 2023,
pp. 159–189. doi: 10.1007/978-3-031-30617-4_6.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function secret sharing”. In: Annual interna-
tional conference on the theory and applications of cryptographic techniques. Springer.
2015, pp. 337–367.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function Secret Sharing: Improvements and
Extensions”. In: ACM CCS 2016. Ed. by Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi. ACM Press, Oct. 2016, pp. 1292–1303.
doi: 10.1145/2976749.2978429.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully Homo-
morphic Encryption without Bootstrapping”. In: vol. 6. 3. New York, NY, USA: As-
sociation for Computing Machinery, July 2014. doi: 10 . 1145 / 2633600. url: https :
//doi.org/10.1145/2633600.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. “NIZK from LPN and Trapdoor
Hash via Correlation Intractability for Approximable Relations”. In: CRYPTO 2020,
Part III. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12172. LNCS. Springer,
Heidelberg, Aug. 2020, pp. 738–767. doi: 10.1007/978-3-030-56877-1_26.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. “Constrained Key-Homomorphic PRFs
from Standard Lattice Assumptions - Or: How to Secretly Embed a Circuit in Your
PRF”. In: TCC 2015, Part II. Ed. by Yevgeniy Dodis and Jesper Buus Nielsen. Vol. 9015.
LNCS. Springer, Heidelberg, Mar. 2015, pp. 1–30. doi: 10.1007/978-3-662-46497-7_1.

https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1109/FOCS46700.2020.00103
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1145/3133956.3134107
https://doi.org/10.1007/978-3-031-30617-4_6
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1007/978-3-662-46497-7_1

BIBLIOGRAPHY 165

[BCP03] Emmanuel Bresson, Dario Catalano, and David Pointcheval. “A Simple Public-Key
Cryptosystem with a Double Trapdoor Decryption Mechanism and Its Applications”.
In: ASIACRYPT 2003. Ed. by Chi-Sung Laih. Vol. 2894. LNCS. Springer, Heidelberg, Nov.
2003, pp. 37–54. doi: 10.1007/978-3-540-40061-5_3.

[BCE+23] Chris Brzuska, Geoffroy Couteau, Christoph Egger, Pihla Karanko, and Pierre Meyer.
New Random Oracle Instantiations from Extremely Lossy Functions. Cryptology ePrint
Archive, Paper 2023/1145. https://eprint.iacr.org/2023/1145. 2023. url: https://eprint.
iacr.org/2023/1145.

[Bui25] Dung Bui. “Efficient Multi-instance Vector Commitment and Application to Post-
quantum Signatures”. In: Information Security and Privacy – ACISP 2025. Springer
Nature Singapore, 2025. url: https://eprint.iacr.org/2024/254.

[BCC+25] Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux.
“Faster Signatures from MPC-in-the-Head”. In: Advances in Cryptology – ASIACRYPT
2024. Ed. by Kai-Min Chung and Yu Sasaki. Singapore: Springer Nature Singapore, 2025,
pp. 396–428. isbn: 978-981-96-0875-1.

[BCC+24] Dung Bui, Haotian Chu, Geoffroy Couteau, Xiao Wang, Chenkai Weng, Kang Yang, and
Yu Yu. “An Efficient ZK Compiler from SIMD Circuits to General Circuits”. In: Journal
of Cryptology 38.1 (Dec. 2024), p. 10. issn: 1432-1378. doi: 10.1007/s00145-024-09531-4.
url: https://doi.org/10.1007/s00145-024-09531-4.

[BCS24] Dung Bui, Kelong Cong, and Cyprien Delpech de Saint Guilhem. Improved All-but-
One Vector Commitment with Applications to Post-Quantum Signatures. ePrint Archive.
Available at https://eprint.iacr.org/2024/255. 2024.

[BC23] Dung Bui and Geoffroy Couteau. “Improved Private Set Intersection for Sets with Small
Entries”. In: PKC 2023, Part II. Ed. by Alexandra Boldyreva and Vladimir Kolesnikov.
Vol. 13941. LNCS. Springer, Heidelberg, May 2023, pp. 190–220. doi: 10.1007/978-3-031-
31371-4_7.

[BCM24] Dung Bui, Geoffroy Couteau, and Nikolas Melissaris. Structured-Seed Local Pseudoran-
dom Generators and their Applications. ePrint Archive. Available at https://eprint.iacr.
org/2024/253. 2024.

[BCM+24] Dung Bui, Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia.
“Fast Public-Key Silent OT and More from Constrained Naor-Reingold”. In: Advances
in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024,
Proceedings, Part VI. Ed. by Marc Joye and Gregor Leander. Vol. 14656. Lecture Notes in
Computer Science. Springer, 2024, pp. 88–118. doi: 10.1007/978-3-031-58751-1_4.

[BCL+21] Benedikt Bünz, Alessandro Chiesa,William Lin, PratyushMishra, and Nicholas Spooner.
“Proof-Carrying Data Without Succinct Arguments”. In: CRYPTO 2021, Part I. Ed. by
Tal Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Heidelberg,
Aug. 2021, pp. 681–710. doi: 10.1007/978-3-030-84242-0_24.

[CNs07] Jan Camenisch, Gregory Neven, and abhi shelat. “Simulatable Adaptive Oblivious Trans-
fer”. In: EUROCRYPT 2007. Ed. by Moni Naor. Vol. 4515. LNCS. Springer, Heidelberg,
May 2007, pp. 573–590. doi: 10.1007/978-3-540-72540-4_33.

https://doi.org/10.1007/978-3-540-40061-5_3
https://eprint.iacr.org/2023/1145
https://eprint.iacr.org/2023/1145
https://eprint.iacr.org/2023/1145
https://eprint.iacr.org/2024/254
https://doi.org/10.1007/s00145-024-09531-4
https://doi.org/10.1007/s00145-024-09531-4
https://eprint.iacr.org/2024/255
https://doi.org/10.1007/978-3-031-31371-4_7
https://doi.org/10.1007/978-3-031-31371-4_7
https://eprint.iacr.org/2024/253
https://eprint.iacr.org/2024/253
https://doi.org/10.1007/978-3-031-58751-1_4
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-540-72540-4_33

166 BIBLIOGRAPHY

[CFF+21] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and Hadrián Rodríguez.
“Lunar: A Toolbox for More Efficient Universal and Updatable zkSNARKs and Commit-
and-Prove Extensions”. In: ASIACRYPT 2021, Part III. Ed. by Mehdi Tibouchi and
Huaxiong Wang. Vol. 13092. LNCS. Springer, Heidelberg, Dec. 2021, pp. 3–33. doi:
10.1007/978-3-030-92078-4_1.

[CFQ19] Matteo Campanelli, Dario Fiore, and Anaïs Querol. “LegoSNARK: Modular Design and
Composition of Succinct Zero-Knowledge Proofs”. In: ACM CCS 2019. Ed. by Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. ACM Press, Nov. 2019,
pp. 2075–2092. doi: 10.1145/3319535.3339820.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryptographic
Protocols”. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE, 2001, pp. 136–145. doi: 10.1109/SFCS.2001.959888.

[CC18] Pyrros Chaidos and Geoffroy Couteau. “Efficient Designated-Verifier Non-interactive
Zero-Knowledge Proofs of Knowledge”. In: EUROCRYPT 2018, Part III. Ed. by Jesper
Buus Nielsen and Vincent Rijmen. Vol. 10822. LNCS. Springer, Heidelberg, Apr. 2018,
pp. 193–221. doi: 10.1007/978-3-319-78372-7_7.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail
Ostrovsky, and Vinod Vaikuntanathan. “Reusable Non-Interactive Secure Computation”.
In:CRYPTO 2019, Part III. Ed. by Alexandra Boldyreva andDanieleMicciancio. Vol. 11694.
LNCS. Springer, Heidelberg, Aug. 2019, pp. 462–488. doi: 10.1007/978-3-030-26954-8_15.

[CM20] Melissa Chase and Peihan Miao. “Private Set Intersection in the Internet Setting from
Lightweight Oblivious PRF”. In: CRYPTO 2020, Part III. Ed. by Daniele Micciancio and
Thomas Ristenpart. Vol. 12172. LNCS. Springer, Heidelberg, Aug. 2020, pp. 34–63. doi:
10.1007/978-3-030-56877-1_2.

[CBB+23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. “HyperPlonk: Plonk with
Linear-Time Prover and High-Degree Custom Gates”. In: EUROCRYPT 2023, Part II.
Ed. by Carmit Hazay and Martijn Stam. Vol. 14005. LNCS. Springer, Heidelberg, Apr.
2023, pp. 499–530. doi: 10.1007/978-3-031-30617-4_17.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. “Fast Private Set Intersection from Homomor-
phic Encryption”. In: ACM CCS 2017. Ed. by Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu. ACM Press, Oct. 2017, pp. 1243–1255. doi: 10.1145/
3133956.3134061.

[CCK+21] Jung Hee Cheon,Wonhee Cho, Jeong Han Kim, and Jiseung Kim. “Adventures in Crypto
DarkMatter: Attacks and Fixes forWeak Pseudorandom Functions”. In: PKC 2021, Part II.
Ed. by Juan Garay. Vol. 12711. LNCS. Springer, Heidelberg, May 2021, pp. 739–760. doi:
10.1007/978-3-030-75248-4_26.

[CHM+20] Alessandro Chiesa, YuncongHu,MaryMaller, PratyushMishra, Psi Vesely, andNicholas
P. Ward. “Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In:
EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12105. LNCS.
Springer, Heidelberg, May 2020, pp. 738–768. doi: 10.1007/978-3-030-45721-1_26.

[CT65] James W. Cooley and John W. Tukey. “An Algorithm for the Machine Calculation of
Complex Fourier Series”. In: Math. Comput. 19 (1965), pp. 297–301. doi: 10.1090/S0025-
5718-1965-0178586-1.

https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1007/978-3-030-75248-4_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1090/S0025-5718-1965-0178586-1

BIBLIOGRAPHY 167

[CL15] Craig Costello and Patrick Longa. “FourQ: Four-Dimensional Decompositions on a
Q-curve over the Mersenne Prime”. In: ASIACRYPT 2015, Part I. Ed. by Tetsu Iwata and
Jung Hee Cheon. Vol. 9452. LNCS. Springer, Heidelberg, Nov. 2015, pp. 214–235. doi:
10.1007/978-3-662-48797-6_10.

[CD23] Geoffroy Couteau and Clément Ducros. “Pseudorandom Correlation Functions from
Variable-Density LPN, Revisited”. In: PKC 2023, Part II. Ed. by Alexandra Boldyreva and
Vladimir Kolesnikov. Vol. 13941. LNCS. Springer, Heidelberg, May 2023, pp. 221–250.
doi: 10.1007/978-3-031-31371-4_8.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, PierrickMéaux,Mélissa Rossi, and Yann Rotella. “On
the Concrete Security of Goldreich’s Pseudorandom Generator”. In: ASIACRYPT 2018,
Part II. Ed. by Thomas Peyrin and Steven Galbraith. Vol. 11273. LNCS. Springer, Heidel-
berg, Dec. 2018, pp. 96–124. doi: 10.1007/978-3-030-03329-3_4.

[CH20] Geoffroy Couteau and Dominik Hartmann. “Shorter Non-interactive Zero-Knowledge
Arguments and ZAPs for Algebraic Languages”. In: CRYPTO 2020, Part III. Ed. by
Daniele Micciancio and Thomas Ristenpart. Vol. 12172. LNCS. Springer, Heidelberg,
Aug. 2020, pp. 768–798. doi: 10.1007/978-3-030-56877-1_27.

[CH19] Geoffroy Couteau and Dennis Hofheinz. “Designated-Verifier Pseudorandom Gener-
ators, and Their Applications”. In: EUROCRYPT 2019, Part II. Ed. by Yuval Ishai and
Vincent Rijmen. Vol. 11477. LNCS. Springer, Heidelberg, May 2019, pp. 562–592. doi:
10.1007/978-3-030-17656-3_20.

[CJJ+23] Geoffroy Couteau, Abhishek Jain, Zhengzhong Jin, and Willy Quach. “A Note on
Non-interactive Zero-Knowledge from CDH”. In: CRYPTO 2023, Part IV. Ed. by Helena
Handschuh and Anna Lysyanskaya. Vol. 14084. LNCS. Springer, Heidelberg, Aug. 2023,
pp. 731–764. doi: 10.1007/978-3-031-38551-3_23.

[CKL+21] Geoffroy Couteau, Michael Klooß, Huang Lin, and Michael Reichle. “Efficient Range
Proofswith Transparent Setup fromBounded Integer Commitments”. In: EUROCRYPT 2021,
Part III. Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12698. LNCS. Springer,
Heidelberg, Oct. 2021, pp. 247–277. doi: 10.1007/978-3-030-77883-5_9.

[CMP+23] Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. “Constrained
Pseudorandom Functions from Homomorphic Secret Sharing”. In: EUROCRYPT 2023,
Part III. Ed. by Carmit Hazay and Martijn Stam. Vol. 14006. LNCS. Springer, Heidelberg,
Apr. 2023, pp. 194–224. doi: 10.1007/978-3-031-30620-4_7.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. “Silver: Silent VOLE
and Oblivious Transfer from Hardness of Decoding Structured LDPC Codes”. In:
CRYPTO 2021, Part III. Ed. by Tal Malkin and Chris Peikert. Vol. 12827. LNCS. Vir-
tual Event: Springer, Heidelberg, Aug. 2021, pp. 502–534. doi: 10.1007/978-3-030-84252-
9_17.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of Partial Knowledge
and Simplified Design ofWitness Hiding Protocols”. In:CRYPTO’94. Ed. by Yvo Desmedt.
Vol. 839. LNCS. Springer, Heidelberg, Aug. 1994, pp. 174–187. doi: 10.1007/3-540-48658-
5_19.

[CHH+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael
Pass, abhi shelat, and Vinod Vaikuntanathan. “Bounded CCA2-Secure Encryption”. In:
ASIACRYPT 2007. Ed. by Kaoru Kurosawa. Vol. 4833. LNCS. Springer, Heidelberg, Dec.
2007, pp. 502–518. doi: 10.1007/978-3-540-76900-2_31.

https://doi.org/10.1007/978-3-662-48797-6_10
https://doi.org/10.1007/978-3-031-31371-4_8
https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1007/978-3-030-56877-1_27
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-031-38551-3_23
https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-031-30620-4_7
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-540-76900-2_31

168 BIBLIOGRAPHY

[CS02] Ronald Cramer and Victor Shoup. “Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption”. In: EUROCRYPT 2002. Ed. by Lars R.
Knudsen. Vol. 2332. LNCS. Springer, Heidelberg, Apr. 2002, pp. 45–64. doi: 10.1007/3-
540-46035-7_4.

[DMR+09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. “Efficient Robust
Private Set Intersection”. In: ACNS 09. Ed. by Michel Abdalla, David Pointcheval, Pierre-
Alain Fouque, and Damien Vergnaud. Vol. 5536. LNCS. Springer, Heidelberg, June 2009,
pp. 125–142. doi: 10.1007/978-3-642-01957-9_8.

[DNN+17] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. “The
TinyTable Protocol for 2-Party Secure Computation, or: Gate-Scrambling Revisited”.
In: CRYPTO 2017, Part I. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10401. LNCS.
Springer, Heidelberg, Aug. 2017, pp. 167–187. doi: 10.1007/978-3-319-63688-7_6.

[DPS+12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. “Multiparty Compu-
tation from Somewhat Homomorphic Encryption”. In: CRYPTO 2012. Ed. by Reihaneh
Safavi-Naini and Ran Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 643–
662. doi: 10.1007/978-3-642-32009-5_38.

[DV21] Amit Daniely and Gal Vardi. “From Local Pseudorandom Generators to Hardness of
Learning”. In: Proceedings of Thirty Fourth Conference on Learning Theory. Ed. byMikhail
Belkin and Samory Kpotufe. Vol. 134. Proceedings ofMachine Learning Research. PMLR,
15–19 Aug 2021, pp. 1358–1394. url: https://proceedings.mlr.press/v134/daniely21a.

html.
[DKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. “Linear-Complexity Private

Set Intersection Protocols Secure in Malicious Model”. In: ASIACRYPT 2010. Ed. by
Masayuki Abe. Vol. 6477. LNCS. Springer, Heidelberg, Dec. 2010, pp. 213–231. doi:
10.1007/978-3-642-17373-8_13.

[DW07] Martin Dietzfelbinger and Christoph Weidling. “Balanced allocation and dictionaries
with tightly packed constant size bins”. In: Theoretical Computer Science 380.1-2 (2007),
pp. 47–68.

[DGH+21] Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna Kelkar, Vivek
Sharma, and Greg Zaverucha. “MPC-Friendly Symmetric Cryptography from Alternat-
ing Moduli: Candidates, Protocols, and Applications”. In: CRYPTO 2021, Part IV. Ed. by
Tal Malkin and Chris Peikert. Vol. 12828. LNCS. Virtual Event: Springer, Heidelberg,
Aug. 2021, pp. 517–547. doi: 10.1007/978-3-030-84259-8_18.

[DIO20] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-Point Zero Knowledge and Its
Applications. Cryptology ePrint Archive, Report 2020/1446. https://eprint.iacr.org/2020/
1446. 2020.

[Ds17] Jack Doerner and abhi shelat. “Scaling ORAM for Secure Computation”. In: ACM CCS
2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu.
ACM Press, Oct. 2017, pp. 523–535. doi: 10.1145/3133956.3133967.

[DMR23] AurélienDupin, PierrickMéaux, andMélissa Rossi. “On the algebraic immunity—resiliency
trade-off, implications for Goldreich’s pseudorandom generator”. In: Designs, Codes
and Cryptography (2023), pp. 1–45.

https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-642-32009-5_38
https://proceedings.mlr.press/v134/daniely21a.html
https://proceedings.mlr.press/v134/daniely21a.html
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-030-84259-8_18
https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2020/1446
https://doi.org/10.1145/3133956.3133967

BIBLIOGRAPHY 169

[DMM+21] Sébastien Duval, Pierrick Méaux, Charles Momin, and François-Xavier Standaert. “Ex-
ploring Crypto-Physical Dark Matter and Learning with Physical Rounding”. In: IACR
TCHES 2021.1 (2021). https://tches.iacr.org/index.php/TCHES/article/view/8738,
pp. 373–401. issn: 2569-2925. doi: 10.46586/tches.v2021.i1.373-401.

[EFK+20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. “SPARKs: Succinct
Parallelizable Arguments of Knowledge”. In: EUROCRYPT 2020, Part I. Ed. by Anne
Canteaut and Yuval Ishai. Vol. 12105. LNCS. Springer, Heidelberg, May 2020, pp. 707–
737. doi: 10.1007/978-3-030-45721-1_25.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. “A Randomized Protocol for
Signing Contracts”. In: CRYPTO’82. Ed. by David Chaum, Ronald L. Rivest, and Alan T.
Sherman. Plenum Press, New York, USA, 1982, pp. 205–210.

[FHN+16] Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. “Efficient Set
Intersection with Simulation-Based Security”. In: Journal of Cryptology 29.1 (Jan. 2016),
pp. 115–155. doi: 10.1007/s00145-014-9190-0.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. “Efficient Private Matching and
Set Intersection”. In: EUROCRYPT 2004. Ed. by Christian Cachin and Jan Camenisch.
Vol. 3027. LNCS. Springer, Heidelberg, May 2004, pp. 1–19. doi: 10.1007/978-3-540-
24676-3_1.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology
ePrint Archive, Report 2019/953. https://eprint.iacr.org/2019/953. 2019.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. “Oblivi-
ous Key-Value Stores and Amplification for Private Set Intersection”. In: CRYPTO 2021,
Part II. Ed. by Tal Malkin and Chris Peikert. Vol. 12826. LNCS. Virtual Event: Springer,
Heidelberg, Aug. 2021, pp. 395–425. doi: 10.1007/978-3-030-84245-1_14.

[GGP+13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic Span
Programs and Succinct NIZKs without PCPs”. In: EUROCRYPT 2013. Ed. by Thomas
Johansson and Phong Q. Nguyen. Vol. 7881. LNCS. Springer, Heidelberg, May 2013,
pp. 626–645. doi: 10.1007/978-3-642-38348-9_37.

[GN19] Satrajit Ghosh and Tobias Nilges. “An Algebraic Approach toMaliciously Secure Private
Set Intersection”. In: EUROCRYPT 2019, Part III. Ed. by Yuval Ishai and Vincent Rijmen.
Vol. 11478. LNCS. Springer, Heidelberg, May 2019, pp. 154–185. doi: 10.1007/978-3-030-
17659-4_6.

[GS19] Satrajit Ghosh andMark Simkin. “The Communication Complexity of Threshold Private
Set Intersection”. In: CRYPTO 2019, Part II. Ed. by Alexandra Boldyreva and Daniele
Micciancio. Vol. 11693. LNCS. Springer, Heidelberg, Aug. 2019, pp. 3–29. doi: 10.1007/
978-3-030-26951-7_1.

[Gil99] Niv Gilboa. “Two Party RSA Key Generation”. In: CRYPTO’99. Ed. by Michael J. Wiener.
Vol. 1666. LNCS. Springer, Heidelberg, Aug. 1999, pp. 116–129. doi: 10.1007/3-540-
48405-1_8.

[GI14] Niv Gilboa and Yuval Ishai. “Distributed point functions and their applications”. In:
Advances in Cryptology–EUROCRYPT 2014: 33rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings 33. Springer. 2014, pp. 640–658.

https://tches.iacr.org/index.php/TCHES/article/view/8738
https://doi.org/10.46586/tches.v2021.i1.373-401
https://doi.org/10.1007/978-3-030-45721-1_25
https://doi.org/10.1007/s00145-014-9190-0
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8

170 BIBLIOGRAPHY

[Gol00] Oded Goldreich. Candidate One-Way Functions Based on Expander Graphs. Cryptology
ePrint Archive, Report 2000/063. https://eprint.iacr.org/2000/063. 2000.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Random
Functions (Extended Abstract)”. In: 25th FOCS. IEEE Computer Society Press, Oct. 1984,
pp. 464–479. doi: 10.1109/SFCS.1984.715949.

[GGM19] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct random func-
tions”. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Gold-
wasser and Silvio Micali. New York, NY, USA: Association for Computing Machinery,
2019, pp. 241–264. isbn: 9781450372664. url: https://doi.org/10.1145/3335741.3335752.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental Game or
A Completeness Theorem for Protocols with Honest Majority”. In: 19th ACM STOC.
Ed. by Alfred Aho. ACM Press, May 1987, pp. 218–229. doi: 10.1145/28395.28420.

[GO94] Oded Goldreich and Yair Oren. “Definitions and properties of zero-knowledge proof sys-
tems”. In: J. Cryptol. 7.1 (Dec. 1994), pp. 1–32. issn: 0933-2790. doi: 10.1007/BF00195207.
url: https://doi.org/10.1007/BF00195207.

[Goo23] Google Research. Don’t be Dense: Efficient Keyword PIR for Sparse Databases. Accessed:
2024-11-10. 2023. url: https://eprint.iacr.org/2023/466.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Non-interactive Zaps and New Tech-
niques for NIZK”. In: CRYPTO 2006. Ed. by Cynthia Dwork. Vol. 4117. LNCS. Springer,
Heidelberg, Aug. 2006, pp. 97–111. doi: 10.1007/11818175_6.

[GS08] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for Bilinear
Groups”. In: EUROCRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965. LNCS. Springer, Hei-
delberg, Apr. 2008, pp. 415–432. doi: 10.1007/978-3-540-78967-3_24.

[GYW+23] Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang Zhang, and
Zheli Liu. “Half-tree: Halving the cost of tree expansion in COT and DPF”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2023, pp. 330–362.

[Haz15] Carmit Hazay. “Oblivious Polynomial Evaluation and Secure Set-Intersection from
Algebraic PRFs”. In: TCC 2015, Part II. Ed. by Yevgeniy Dodis and Jesper Buus Nielsen.
Vol. 9015. LNCS. Springer, Heidelberg, Mar. 2015, pp. 90–120. doi: 10.1007/978-3-662-
46497-7_4.

[HL10] Carmit Hazay and Yehuda Lindell. A Note on the Relation between the Definitions of
Security for Semi-Honest and Malicious Adversaries. Cryptology ePrint Archive, Report
2010/551. https://eprint.iacr.org/2010/551. 2010.

[HN10] Carmit Hazay and Kobbi Nissim. “Efficient Set Operations in the Presence of Malicious
Adversaries”. In: PKC 2010. Ed. by Phong Q. Nguyen and David Pointcheval. Vol. 6056.
LNCS. Springer, Heidelberg, May 2010, pp. 312–331. doi: 10.1007/978-3-642-13013-7_19.

[HOS+18] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. “Con-
cretely Efficient Large-Scale MPC with Active Security (or, TinyKeys for TinyOT)”.
In: ASIACRYPT 2018, Part III. Ed. by Thomas Peyrin and Steven Galbraith. Vol. 11274.
LNCS. Springer, Heidelberg, Dec. 2018, pp. 86–117. doi: 10.1007/978-3-030-03332-3_4.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. “Scalable Multi-party
Private Set-Intersection”. In: PKC 2017, Part I. Ed. by Serge Fehr. Vol. 10174. LNCS.
Springer, Heidelberg, Mar. 2017, pp. 175–203. doi: 10.1007/978-3-662-54365-8_8.

https://eprint.iacr.org/2000/063
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1145/3335741.3335752
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://eprint.iacr.org/2023/466
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-46497-7_4
https://doi.org/10.1007/978-3-662-46497-7_4
https://eprint.iacr.org/2010/551
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-662-54365-8_8

BIBLIOGRAPHY 171

[HKL+12] Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof Pietrzak.
“Lapin: An Efficient Authentication Protocol Based on Ring-LPN”. In: FSE 2012. Ed. by
Anne Canteaut. Vol. 7549. LNCS. Springer, Heidelberg, Mar. 2012, pp. 346–365. doi:
10.1007/978-3-642-34047-5_20.

[HR18] Justin Holmgren and Ron Rothblum. “Delegating Computations with (Almost) Minimal
Time and Space Overhead”. In: 59th FOCS. Ed. by Mikkel Thorup. IEEE Computer
Society Press, Oct. 2018, pp. 124–135. doi: 10.1109/FOCS.2018.00021.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. “Private Set Intersection: Are Garbled
Circuits Better than Custom Protocols?” In: NDSS 2012. The Internet Society, Feb. 2012.

[HFH99] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. “Enhancing Privacy and Trust
in Electronic Communities”. In: Proceedings of the 1st ACM Conference on Electronic
Commerce. EC ’99. Denver, Colorado, USA: Association for Computing Machinery,
1999, pp. 78–86. isbn: 1581131763. doi: 10.1145/336992.337012. url: https://doi.org/10.
1145/336992.337012.

[IBM21] IBM Research. IBM/TSS: Threshold signature schemes made simple to use. Accessed:
2024-11-10. 2021. url: https://github.com/IBM/TSS.

[IKN+03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. “Extending Oblivious Transfers
Efficiently”. In: CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. LNCS. Springer, Heidelberg,
Aug. 2003, pp. 145–161. doi: 10.1007/978-3-540-45146-4_9.

[IKO+08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Cryptography with
constant computational overhead”. In: 40th ACM STOC. Ed. by Richard E. Ladner and
Cynthia Dwork. ACM Press, May 2008, pp. 433–442. doi: 10.1145/1374376.1374438.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability obfuscation from well-
founded assumptions”. In: 53rd ACM STOC. Ed. by Samir Khuller and Virginia Vas-
silevska Williams. ACM Press, June 2021, pp. 60–73. doi: 10.1145/3406325.3451093.

[JJ21] Abhishek Jain and Zhengzhong Jin. “Non-interactive Zero Knowledge from Sub-
exponential DDH”. In: EUROCRYPT 2021, Part I. Ed. by Anne Canteaut and François-
Xavier Standaert. Vol. 12696. LNCS. Springer, Heidelberg, Oct. 2021, pp. 3–32. doi:
10.1007/978-3-030-77870-5_1.

[JL10] Stanislaw Jarecki and Xiaomin Liu. “Fast Secure Computation of Set Intersection”.
In: SCN 10. Ed. by Juan A. Garay and Roberto De Prisco. Vol. 6280. LNCS. Springer,
Heidelberg, Sept. 2010, pp. 418–435. doi: 10.1007/978-3-642-15317-4_26.

[JMN23] Thomas Johansson, Willi Meier, and Vu Nguyen. “Differential cryptanalysis of Mod-
2/Mod-3 constructions of binary weak PRFs”. In: 2023 IEEE International Symposium on
Information Theory (ISIT). IEEE. 2023, pp. 477–482.

[KNY+19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. “Desig-
nated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assumptions”. In:
EUROCRYPT 2019, Part II. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11477. LNCS.
Springer, Heidelberg, May 2019, pp. 622–651. doi: 10.1007/978-3-030-17656-3_22.

[Kel20] Marcel Keller. “MP-SPDZ: A versatile framework for multi-party computation”. In:
Proceedings of the 2020 ACMSIGSAC conference on computer and communications security.
2020, pp. 1575–1590.

https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1109/FOCS.2018.00021
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/336992.337012
https://github.com/IBM/TSS
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-030-77870-5_1
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-030-17656-3_22

172 BIBLIOGRAPHY

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: Faster Malicious Arith-
metic Secure Computation with Oblivious Transfer”. In: ACM CCS 2016. Ed. by Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi.
ACM Press, Oct. 2016, pp. 830–842. doi: 10.1145/2976749.2978357.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Overdrive: Making SPDZ Great
Again”. In: EUROCRYPT 2018, Part III. Ed. by Jesper Buus Nielsen and Vincent Rijmen.
Vol. 10822. LNCS. Springer, Heidelberg, Apr. 2018, pp. 158–189. doi: 10.1007/978-3-319-
78372-7_6.

[KW15] Eike Kiltz and Hoeteck Wee. “Quasi-Adaptive NIZK for Linear Subspaces Revisited”. In:
EUROCRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. LNCS.
Springer, Heidelberg, Apr. 2015, pp. 101–128. doi: 10.1007/978-3-662-46803-6_4.

[KS05] Lea Kissner andDawnXiaodong Song. “Privacy-Preserving Set Operations”. In:CRYPTO 2005.
Ed. by Victor Shoup. Vol. 3621. LNCS. Springer, Heidelberg, Aug. 2005, pp. 241–257.
doi: 10.1007/11535218_15.

[KKR+16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. “Efficient Batched
Oblivious PRF with Applications to Private Set Intersection”. In: ACM CCS 2016. Ed. by
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi. ACM Press, Oct. 2016, pp. 818–829. doi: 10.1145/2976749.2978381.

[KRT+19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. “Scalable Private Set
Union from Symmetric-Key Techniques”. In: ASIACRYPT 2019, Part II. Ed. by Steven D.
Galbraith and Shiho Moriai. Vol. 11922. LNCS. Springer, Heidelberg, Dec. 2019, pp. 636–
666. doi: 10.1007/978-3-030-34621-8_23.

[KS08] Vladimir Kolesnikov and Thomas Schneider. “Improved garbled circuit: Free XOR
gates and applications”. In: Automata, Languages and Programming: 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35.
Springer. 2008, pp. 486–498.

[KS22] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal machine executions
without universal circuits. Cryptology ePrint Archive, Report 2022/1758. https://eprint.
iacr.org/2022/1758. 2022.

[KST22] AbhiramKothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive Zero-Knowledge
Arguments from Folding Schemes”. In: CRYPTO 2022, Part IV. Ed. by Yevgeniy Dodis
and Thomas Shrimpton. Vol. 13510. LNCS. Springer, Heidelberg, Aug. 2022, pp. 359–388.
doi: 10.1007/978-3-031-15985-5_13.

[Kul24] Dalvinder Kular. JPMorgan partners with fraud prevention platform. 2024. url: https:
//www.fstech.co.uk/fst/JPMorgan_Partners_With_Fraud_Prevention_Platform.php.

[KD08] Reinhard Kutzelnigg andMichael Drmota. Random bipartite graphs and their application
to Cuckoo Hashing. na, 2008.

[Lip16] Helger Lipmaa. “Prover-Efficient Commit-and-Prove Zero-Knowledge SNARKs”. In:
AFRICACRYPT 16. Ed. by David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine
Rachidi. Vol. 9646. LNCS. Springer, Heidelberg, Apr. 2016, pp. 185–206. doi: 10.1007/978-
3-319-31517-1_10.

[LWY+22] Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. The Hardness of LPN over Any Integer
Ring and Field for PCG Applications. Cryptology ePrint Archive, Report 2022/712. https:
//eprint.iacr.org/2022/712. 2022.

https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/11535218_15
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1007/978-3-030-34621-8_23
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2022/1758
https://doi.org/10.1007/978-3-031-15985-5_13
https://www.fstech.co.uk/fst/JPMorgan_Partners_With_Fraud_Prevention_Platform.php
https://www.fstech.co.uk/fst/JPMorgan_Partners_With_Fraud_Prevention_Platform.php
https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1007/978-3-319-31517-1_10
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2022/712

BIBLIOGRAPHY 173

[LQR+19] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu. “New
Constructions of Reusable Designated-Verifier NIZKs”. In: CRYPTO 2019, Part III. Ed. by
Alexandra Boldyreva and Daniele Micciancio. Vol. 11694. LNCS. Springer, Heidelberg,
Aug. 2019, pp. 670–700. doi: 10.1007/978-3-030-26954-8_22.

[Méa] P Méaux. On the fast algebraic immunity of threshold functions. Crypt. Commun. 13 (5),
741–762 (2021).

[Méa22] Pierrick Méaux. “On the algebraic immunity of direct sum constructions”. In: Discrete
Applied Mathematics 320 (2022), pp. 223–234.

[NR95] Moni Naor and Omer Reingold. “Synthesizers and Their Application to the Parallel
Construction of Pseudo-Random Functions”. In: 36th FOCS. IEEE Computer Society
Press, Oct. 1995, pp. 170–181. doi: 10.1109/SFCS.1995.492474.

[NR97] Moni Naor and Omer Reingold. “Number-theoretic Constructions of Efficient Pseudo-
random Functions”. In: 38th FOCS. IEEE Computer Society Press, Oct. 1997, pp. 458–467.
doi: 10.1109/SFCS.1997.646134.

[Nat+20] S. Nathan et al. Enigma: Decentralized Computation Platform with Guaranteed Privacy.
Tech. rep. Initiative for Cryptocurrencies and Contracts (IC3), 2020. url: https://web.
media.mit.edu/~guyz/data/enigma_full.pdf.

[Obe07] Ulrich Oberst. “The fast Fourier transform”. In: SIAM journal on control and optimization
46.2 (2007), pp. 496–540.

[Ope] OpenSSL Project. OpenSSL Cryptography and SSL/TLS Toolkit. https://www.openssl.org/.
Accessed: 2024-02-12.

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. “The Rise of Paillier: Homomorphic
Secret Sharing and Public-Key Silent OT”. In: EUROCRYPT 2021, Part I. Ed. by Anne
Canteaut and François-Xavier Standaert. Vol. 12696. LNCS. Springer, Heidelberg, Oct.
2021, pp. 678–708. doi: 10.1007/978-3-030-77870-5_24.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. “Actively Secure 1-out-of-N OT
Extension with Application to Private Set Intersection”. In: CT-RSA 2017. Ed. by Helena
Handschuh. Vol. 10159. LNCS. Springer, Heidelberg, Feb. 2017, pp. 381–396. doi: 10.
1007/978-3-319-52153-4_22.

[OB22] Alex Ozdemir and Dan Boneh. “Experimenting with Collaborative zk-SNARKs: Zero-
Knowledge Proofs for Distributed Secrets”. In: USENIX Security 2022. Ed. by Kevin R. B.
Butler and Kurt Thomas. USENIX Association, Aug. 2022, pp. 4291–4308.

[PR04] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo hashing”. In: Journal of Algorithms
51.2 (2004), pp. 122–144.

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes”. In: EUROCRYPT’99. Ed. by Jacques Stern. Vol. 1592. LNCS. Springer, Heidelberg,
May 1999, pp. 223–238. doi: 10.1007/3-540-48910-X_16.

[PsV06] Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. “Construction of a Non-malleable
Encryption Scheme from Any Semantically Secure One”. In: CRYPTO 2006. Ed. by
Cynthia Dwork. Vol. 4117. LNCS. Springer, Heidelberg, Aug. 2006, pp. 271–289. doi:
10.1007/11818175_16.

[Pat04] Boaz Patt-Shamir. “A note on efficient aggregate queries in sensor networks”. In: 23rd
ACM PODC. Ed. by Soma Chaudhuri and Shay Kutten. ACM, July 2004, pp. 283–289.
doi: 10.1145/1011767.1011809.

https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1109/SFCS.1995.492474
https://doi.org/10.1109/SFCS.1997.646134
https://web.media.mit.edu/~guyz/data/enigma_full.pdf
https://web.media.mit.edu/~guyz/data/enigma_full.pdf
https://www.openssl.org/
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/11818175_16
https://doi.org/10.1145/1011767.1011809

174 BIBLIOGRAPHY

[Ped92] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing”. In: CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576. LNCS. Springer,
Heidelberg, Aug. 1992, pp. 129–140. doi: 10.1007/3-540-46766-1_9.

[PS19] Chris Peikert and Sina Shiehian. “Noninteractive Zero Knowledge for NP from (Plain)
Learning with Errors”. In: CRYPTO 2019, Part I. Ed. by Alexandra Boldyreva and Daniele
Micciancio. Vol. 11692. LNCS. Springer, Heidelberg, Aug. 2019, pp. 89–114. doi: 10.
1007/978-3-030-26948-7_4.

[PRT+19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. “SpOT-Light: Lightweight
Private Set Intersection from Sparse OT Extension”. In: CRYPTO 2019, Part III. Ed. by
Alexandra Boldyreva and Daniele Micciancio. Vol. 11694. LNCS. Springer, Heidelberg,
Aug. 2019, pp. 401–431. doi: 10.1007/978-3-030-26954-8_13.

[PRT+20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. “PSI from PaXoS: Fast,
Malicious Private Set Intersection”. In: EUROCRYPT 2020, Part II. Ed. by Anne Canteaut
and Yuval Ishai. Vol. 12106. LNCS. Springer, Heidelberg, May 2020, pp. 739–767. doi:
10.1007/978-3-030-45724-2_25.

[PSS+15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. “Phasing: Private
Set Intersection Using Permutation-based Hashing”. In: USENIX Security 2015. Ed. by
Jaeyeon Jung and Thorsten Holz. USENIX Association, Aug. 2015, pp. 515–530.

[PSW+18] Benny Pinkas, Thomas Schneider, ChristianWeinert, and Udi Wieder. “Efficient Circuit-
Based PSI via CuckooHashing”. In: EUROCRYPT 2018, Part III. Ed. by Jesper Buus Nielsen
and Vincent Rijmen. Vol. 10822. LNCS. Springer, Heidelberg, Apr. 2018, pp. 125–157.
doi: 10.1007/978-3-319-78372-7_5.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. “Faster Private Set Intersection
Based on OT Extension”. In: USENIX Security 2014. Ed. by Kevin Fu and Jaeyeon Jung.
USENIX Association, Aug. 2014, pp. 797–812.

[PSZ18] Benny Pinkas, Thomas Schneider, andMichael Zohner. “Scalable private set intersection
based on OT extension”. In: ACM Transactions on Privacy and Security (TOPS) 21.2
(2018), pp. 1–35.

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. “Reusable Designated-Verifier
NIZKs for all NP from CDH”. In: EUROCRYPT 2019, Part II. Ed. by Yuval Ishai and
Vincent Rijmen. Vol. 11477. LNCS. Springer, Heidelberg, May 2019, pp. 593–621. doi:
10.1007/978-3-030-17656-3_21.

[Rab81] Michael Rabin. “How to exchange secrets by oblivious transfer”. In: Technical Report
TR-81, Harvard University, (1981).

[RRT23] Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. “Expand-Convolute Codes
for Pseudorandom Correlation Generators from LPN”. In: CRYPTO 2023, Part IV. Ed. by
Helena Handschuh and Anna Lysyanskaya. Vol. 14084. LNCS. Springer, Heidelberg,
Aug. 2023, pp. 602–632. doi: 10.1007/978-3-031-38551-3_19.

[RR22] Peter Rindal and Srinivasan Raghuraman. “Blazing Fast PSI from Improved OKVS and
Subfield VOLE”. In: IACR Cryptol. ePrint Arch. (2022), p. 320. url: https://eprint.iacr.
org/2022/320.

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/978-3-031-38551-3_19
https://eprint.iacr.org/2022/320
https://eprint.iacr.org/2022/320

BIBLIOGRAPHY 175

[RR17] Peter Rindal and Mike Rosulek. “Malicious-Secure Private Set Intersection via Dual
Execution”. In: ACM CCS 2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu. ACM Press, Oct. 2017, pp. 1229–1242. doi: 10.1145/3133956.
3134044.

[RR] Peter Rindal and Lawrence Roy. libOTe: an efficient, portable, and easy to use Oblivious
Transfer Library. https://github.com/osu-crypto/libOTe.

[RS21] Peter Rindal and Phillipp Schoppmann. “VOLE-PSI: Fast OPRF and Circuit-PSI from
Vector-OLE”. In: EUROCRYPT 2021, Part II. Ed. by Anne Canteaut and François-Xavier
Standaert. Vol. 12697. LNCS. Springer, Heidelberg, Oct. 2021, pp. 901–930. doi: 10.1007/
978-3-030-77886-6_31.

[RT21a] Mike Rosulek and Ni Trieu. Compact and Malicious Private Set Intersection for Small
Sets. Cryptology ePrint Archive, Report 2021/1159. https://eprint.iacr.org/2021/1159.
2021.

[RT21b] Mike Rosulek and Ni Trieu. “Compact and Malicious Private Set Intersection for Small
Sets”. In: ACM CCS 2021. Ed. by Giovanni Vigna and Elaine Shi. ACM Press, Nov. 2021,
pp. 1166–1181. doi: 10.1145/3460120.3484778.

[Roy22] Lawrence Roy. “SoftSpokenOT: Quieter OT Extension from Small-Field Silent VOLE
in the Minicrypt Model”. In: CRYPTO 2022, Part I. Ed. by Yevgeniy Dodis and Thomas
Shrimpton. Vol. 13507. LNCS. Springer, Heidelberg, Aug. 2022, pp. 657–687. doi: 10.
1007/978-3-031-15802-5_23.

[Ste+24] W.A. Stein et al. Sage Mathematics Software (Version 10.2). http://www.sagemath.org.
The Sage Development Team. 2024.

[SVV16] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. “Trinocchio: Privacy-
Preserving Outsourcing by Distributed Verifiable Computation”. In: ACNS 16. Ed. by
Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider. Vol. 9696. LNCS. Springer,
Heidelberg, June 2016, pp. 346–366. doi: 10.1007/978-3-319-39555-5_19.

[SGR+19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. “Dis-
tributed Vector-OLE: Improved Constructions and Implementation”. In: ACM CCS 2019.
Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. ACM
Press, Nov. 2019, pp. 1055–1072. doi: 10.1145/3319535.3363228.

[22] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL. Microsoft Research,
Redmond, WA. Mar. 2022.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems for
succinct arguments. Cryptology ePrint Archive, Paper 2023/552. https://eprint.iacr.org/
2023/552. 2023.

[SV14] Ankit Sharma and Jan Vondrák. “Multiway cut, pairwise realizable distributions, and
descending thresholds”. In: 46th ACM STOC. Ed. by David B. Shmoys. ACM Press, May
2014, pp. 724–733. doi: 10.1145/2591796.2591866.

[TLP+17] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas, and N.
Asokan. “The Circle Game: Scalable Private Membership Test Using Trusted Hardware”.
In: ASIACCS 17. Ed. by Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and
Xun Yi. ACM Press, Apr. 2017, pp. 31–44.

https://doi.org/10.1145/3133956.3134044
https://doi.org/10.1145/3133956.3134044
https://github.com/osu-crypto/libOTe
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://eprint.iacr.org/2021/1159
https://doi.org/10.1145/3460120.3484778
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
http://www.sagemath.org
https://doi.org/10.1007/978-3-319-39555-5_19
https://doi.org/10.1145/3319535.3363228
https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552
https://doi.org/10.1145/2591796.2591866

176 BIBLIOGRAPHY

[TE76] R. E. Twogood and M. P. Ekstrom. “An Extension of Eklundh’s Matrix Transposition
Algorithm and Its Application in Digital Image Processing”. In: IEEE Trans. Comput.
25.9 (Sept. 1976), pp. 950–952. issn: 0018-9340. doi: 10.1109/TC.1976.1674721. url:
https://doi.org/10.1109/TC.1976.1674721.

[Üna23a] Akin Ünal. “New Baselines for Local Pseudorandom Number Generators by Field
Extensions”. In: Cryptology ePrint Archive (2023).

[Üna23b] Akin Ünal. “Worst-Case Subexponential Attacks on PRGs of Constant Degree or Con-
stant Locality”. In: EUROCRYPT 2023, Part I. Ed. by Carmit Hazay and Martijn Stam.
Vol. 14004. LNCS. Springer, Heidelberg, Apr. 2023, pp. 25–54. doi: 10.1007/978-3-031-
30545-0_2.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty
computation toolkit. https://github.com/emp-toolkit. 2016.

[WYK+21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. “Wolverine: Fast, Scalable,
and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic
Circuits”. In: 2021 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, May 2021, pp. 1074–1091. doi: 10.1109/SP40001.2021.00056.

[WYY+22] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. “AntMan:
Interactive Zero-Knowledge Proofs with Sublinear Communication”. In: ACM CCS 2022.
Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press, Nov. 2022,
pp. 2901–2914. doi: 10.1145/3548606.3560667.

[Wie+17] Udi Wieder et al. “Hashing, load balancing and multiple choice”. In: Foundations and
Trends® in Theoretical Computer Science 12.3–4 (2017), pp. 275–379.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica.
“DIZK: A Distributed Zero Knowledge Proof System”. In: USENIX Security 2018. Ed. by
William Enck and Adrienne Porter Felt. USENIX Association, Aug. 2018, pp. 675–692.

[YGJ+21] Jing Yang, Qian Guo, Thomas Johansson, and Michael Lentmaier. “Revisiting the
concrete security of Goldreich’s pseudorandom generator”. In: IEEE Transactions on
Information Theory 68.2 (2021), pp. 1329–1354.

[YSW+21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. “QuickSilver: Efficient and
Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”. In:
ACM CCS 2021. Ed. by Giovanni Vigna and Elaine Shi. ACM Press, Nov. 2021, pp. 2986–
3001. doi: 10.1145/3460120.3484556.

[YW22] Kang Yang and Xiao Wang. “Non-interactive Zero-Knowledge Proofs to Multiple
Verifiers”. In: ASIACRYPT 2022, Part III. Ed. by Shweta Agrawal and Dongdai Lin.
Vol. 13793. LNCS. Springer, Heidelberg, Dec. 2022, pp. 517–546. doi: 10.1007/978-3-031-
22969-5_18.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. “Ferret: Fast
Extension for Correlated OT with Small Communication”. In: ACM CCS 2020. Ed. by
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM Press, Nov. 2020,
pp. 1607–1626. doi: 10.1145/3372297.3417276.

[Yao86] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets (Extended Abstract)”.
In: 27th FOCS. IEEE Computer Society Press, Oct. 1986, pp. 162–167. doi: 10.1109/SFCS.
1986.25.

https://doi.org/10.1109/TC.1976.1674721
https://doi.org/10.1109/TC.1976.1674721
https://doi.org/10.1007/978-3-031-30545-0_2
https://doi.org/10.1007/978-3-031-30545-0_2
https://github.com/emp-toolkit
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3548606.3560667
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

	Abstract
	Résumé
	Introduction en Français
	Acknowledgement
	Introduction
	Secure Multi-Party Computation (MPC)
	Secure Computation in the Correlated Randomness Model
	Practical Secure Computation

	Our Contribution
	Improving PSI for Set with Small Entries PKC:BuiCou23
	Efficient Designated-Verifier Zero-Knowledge Proof JOC:SIMDZK,EC:PCF-OT
	FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits AC:FOLEAGE
	Other Contributions

	Organization of this Thesis

	Preliminaries
	Notations
	Cryptographic Definitions
	Universal Composability (UC)
	Commitment Schemes
	Information-Theoretic Message Authentication Codes (ITMACs)

	Computational Hardness Assumptions
	Discrete-Logarithm-Based Assumptions
	Decisional Composite Residuosity Assumption
	Learning Parity with Noise (LPN)
	Ring Learning Parity with Noise (Ring-LPN)
	Quasi-Abelian Syndrome Decoding Problem (QA-SD)

	(Constrained) Pseudorandom Function (PRF)
	Pseudorandom Functions
	Constrained Pseudorandom Functions

	Function Secret Sharing (FSS)
	Pseudorandom Correlation Generators (PCGs)
	Defining Pseudorandom Correlation Generators
	Vector Oblivious Linear Evaluation (Vector OLE)
	Oblivious Linear Evaluation (OLE)

	Pseudorandom Correlation Functions (PCFs)
	Weak Pseudorandom Correlation Functions (wPCFs)
	Strong Pseudorandom Correlation Functions

	Designated-Verifier Zero-Knowledge Proofs
	Privately Verifiable ZKPs
	Non-Interactive Zero-Knowledge Proofs (NIZKs)

	Ideal Functionalities
	Ideal Functionality of PSI
	Ideal Functionalities for Interactive ZKPs

	Private Set Intersection
	Motivations and Related Works
	Detailed Contributions
	Technical Overview
	New sVOLE-Based PSI for Databases with Small Entries
	Malicious Security

	PSI from Subfield-VOLE
	Membership Batched OPRF
	Semi-honest PSI from mOPRF
	Malicious PSI from mOPRF
	Malicious Dual Execution

	Standard PSI from subfield-ring OLE
	Semi-Honest Batch Non-Interactive PSI from Subfield Ring-OLE
	Maliciously Secure PSI in the Standard Model

	Efficient Designated-Verifier Zero-Knowledge Proofs
	Sublinear PCG-based ZKP for General Circuits
	Motivation and Related Works
	Detailed Contributions
	Technical Overview
	Generic Compiler of ZK Proofs from SIMD Circuits to Arbitrary Circuits
	Generic ZK for Limited-Memory
	Sublinear Designated-Verifier ZK

	DV-NIZK from Public-Key PCF-based OT
	Motivations and Related Works
	Detailed Contributions
	Construction of Reusable DV-NIZK
	Efficient Public-Key PCF-based OT
	Concrete Instantiation of DV-NIZK

	FOLEAGE: F4OLEAGE-based MPC for Boolean Circuits
	Motivation and Related Works
	Detailed Contributions
	Technical Overview
	Background: Secure MPC from PCGs
	Constructing Programmable PCGs
	F2-triples from F4-triples
	Improved Protocol from F4-OLEs for N=2
	Fast Programmable PCG for F4-OLEs
	Distributed Seed Generation

	A Fast PCG for F4-OLEs
	PCGs from QA-SD Assumption
	PCGs over F4 from QA-SD Assumption
	Optimizations

	Distributed Seed Generation
	A Ternary Distributed Point Function
	Distributed DPF Key Generation

	Implementation and Evaluation
	N-party MPC with Preprocessing from F4-OLEs
	Secure Computation in the FcBT-Hybrid Model
	Improved Protocol for N=2 Parties

	Faster Seed Expansion from Hashing
	Faster Seed Expansion
	Application of OLE over F4 to Silent OT Extension

	Conclusion
	Conclusion
	Open Questions

	List of Figures
	List of Tables
	Bibliography

